BEFORE THE PUBLIC UTILITES COMMISSION OF NEW HAMPSHIRE

Docket No. DE 20-170

IN THE MATTER OF: Electric Distribution Utilities

Electric Vehicle Time of Use Rates

DIRECT TESTIMONY

OF

SANEM I. SERGICI

October 13, 2021

Table of Contents

I.	Statement of Qualifications1
II.	Purpose of Testimony1
III.	Principles of Rate Design
IV.	Assessment of Eversource Residential EV TOU Rates and High Demand Draw Alternative
V.	Assessment of Liberty Residential EV TOU rates and High Demand Draw Alternative
VI.	Assessment of Unitil Residential EV TOU Rates and High Draw EV TOU Rates37
VII.	Findings and Recommendations

LIST OF ATTACHMENTS

SIS-1	Curriculum Vitae of Sanem Sergici
SIS-2	Eversource Response to Request Energy 2-019
SIS-3	Eversource Response to Request Energy 3-008
SIS-4	Eversource Response to Request Energy 3-001
SIS-5	Eversource Response to DOE 2-007
SIS-6	DE 21-078 Eversource Response to DOE 1-001 Attachment EAD-2 Workpaper
SIS-7	Liberty Response to DOE 2-5
SIS-8	Liberty Response to Staff 1-6 Attachment Staff 1-6
SIS-9	Liberty Response to Energy 4-4 Attachment 4-4.1
SIS-10	Liberty Response to Energy 4-4 Attachment 4-4.2
SIS-11	Liberty Response to Energy 4-4 Attachment 4-4.4
SIS-12	Liberty Response to Energy 4-5 Attachment 4-5
SIS-13	Unitil Response to Staff 1-008(b)

BEFORE THE PUBLIC UTILITIES COMMISSION OF NEW HAMPSHIRE

I. Statement of Qualifications

- 2 Q1. Please state your name, position, and business address.
- A1: My name is Sanem Sergici, I am a Principal with The Brattle Group in the Boston
 office, located at One Beacon Street, Boston, Massachusetts 02108.

5 Q2. Please describe your professional experience and educational background.

A2: I am an energy economist with sixteen years of consulting and research experience. My
 consulting practice is focused on understanding customer adoption of and response to
 innovative rate designs and emerging technologies. I regularly assist my clients on
 matters related to retail rate design, big data analytics, electrification, grid
 modernization investments, resource planning, and alternative ratemaking mechanisms.
 A statement of my qualifications is included in Attachment No. SIS-1.

Q3. Have you previously filed testimony before the New Hampshire Public Utilities Commission (PUC)?

A3: Yes, I have in Docket Nos DE 19-057 and DE 19-064.

¹⁵ II. Purpose of Testimony

16 Q4. On whose behalf are you testifying?

17 A4: I am testifying on behalf of the New Hampshire Department of Energy (Energy) Staff.

18 Q5. What is the purpose of your testimony?

A5: The purpose of my testimony is to comment on the Residential electric vehicle (EV)
 time of use (TOU) rate designs and alternative rate design proposals for high-demand
 draw public EV charging facilities, proposed by Eversource, Liberty, and Unitil.

1	Q6.	Please summarize your findings and recommendations related to design of the EV
2		TOU rates.
3	A6:	Key findings of my analyses and my recommendations are as follows:
4	•	I recommend that all three utilities propose an EV TOU alternative to current demand
5		charge based rates for high-demand draw commercial EV charging applications. In
6		the absence of demand charges, TOU rate is more consistent with the marginal cost
7		principles, while minimizing cross subsidies.
8	•	Utilities' arguments of commercial EV charging applications not being ideal for TOU
9		rates are not warranted. Unless utilities design rates reflecting efficient and marginal
10		cost-based price signals, market participants will not respond with innovation.
11	•	The State of NH does not have an official transportation electrification public policy
12		goal, therefore there is no public policy basis for creating cross-subsidies in the rate
13		design for commercial charging applications at this time.
14	•	Given that Eversource is not able to implement a three period EV TOU rate for its
15		residential customers at this time, the two-period domestic TOU rate will be the
16		transitional rate for these customers. A seasonally differentiated two-period rate with
17		a shorter peak window that reflects the marginal facility costs and a lower customer
18		charge will provide stronger price signals and is more likely to be attractive to
19		customers both with and without EVs.
20	•	Eversource's proposed high draw demand alternative rate to demand charges is
21		revenue neutral at the 10% station utilization level for which it was designed. While
22		this rate is designed to recover at least a portion of demand related revenues in the
23		form of volumetric charges, it will still lead to cross-subsidies. Moreover, this rate
24		does not provide marginal cost based price signals for a more efficient use of system
25		assets. I recommend that Eversource designs an EV TOU rate as an alternative to
26		demand charges, using the approach utilized in the design of Energy's illustrative EV
27		TOU rate for Eversource.
28	•	Liberty has not proposed a new residential EV TOU at this time as it offers a three-
29		period seasonal rate initially offered for battery storage customers. This rate will also

1	be available to separately metered EV TOU customers. I recommend that Liberty
2	revisits this rate design periodically to ensure that the time periods are still reflective
3	of system demand conditions and lead to efficient charging behavior.
4	• Liberty's proposed high-draw demand alternative to demand charges is a revenue
5	neutral volumetric rate that reduces most of the charges collected from demand
6	charges, but not all of them. This rate, however, does not provide price signals that
7	will incentivize a more efficient use of the system assets. I recommend that Liberty
8	designs an EV TOU rate as an alternative to demand charges, using the approach
9	utilized in the design of Energy's illustrative EV TOU rate for Liberty.
10	• While Unitil's residential EV TOU rate design is generally consistent with the
11	guidance issued by the Commission on the ideal attributes of the EV TOU rates, the
12	distribution component of the rate is "imposed" to achieve a 3:1 peak to offpeak ratio.
13	Unitil should derive the distribution cost component of this rate in such a way that it
14	assigns the costs of the system assets to those hours driving the need for those assets.
15	Unitil should also evaluate whether it will incur additional costs resulting from
16	customers' charging their EVs at home, in addition to the incremental costs
17	associated with the meters.
18	• Unitil has proposed an EV TOU rate for high-demand draw applications, which
19	introduces time varying rates for the generation and transmission components of this
20	rate. However, Unitil's proposed rate still maintains the original demand charge
21	component and proposes a three year demand charge holiday. These cross subsidies
22	for the commercial charging facilities through rate design are not warranted given that
23	increased transportation electrification is not an official public policy goal in New
24	Hampshire. I recommend that Unitil designs an EV TOU rate as an alternative to
25	demand charges, using the approach utilized in the design of Energy's illustrative EV
26	TOU rate for Unitil.

1	Q7.	Please summarize your recommendations related to implementation of EV TOU
2		rates.
3	A7:	My recommendations related to the implementation of the EV TOU rates are as
4		follows:
5	•	I recommend that the Commission direct all three utilities to offer a customer-
6		contributed option for the additional meter.
7	•	I recommend that the Commission direct those utilities which have not provided a
8		marketing plan to develop a marketing plan.
9	•	I recommend that the Commission direct those utilities which have not proposed an
10		alternative metering feasibility pilot to develop such a pilot.
11	•	I recommend that the Commission require annual reports from the utilities regarding
12		the rates and pilots at issue in this proceeding.
13	Q8.	How is your testimony organized?
14	A8:	Section III describes the established principles of rate design and sets the foundation
15		for my assessment of utilities' EV TOU and alternative rate design proposals for public
16		EV charging stations. Section IV presents my assessment of Eversource's proposed
17		rates; Section V presents my assessment of Liberty's proposed rates; and Section VI
18		presents my assessment of Unitil's proposed rates. Section VII concludes my
19		testimony.

III. Principles of Rate Design

2	Q9.	Р	lease describe the principles of rate design that you used to review the proposed			
3		rate design.				
4	A9:	Wi	dely accepted principles of rate design were outlined in the various editions of			
5		James C. Bonbright's <i>Principles of Public Utility Rates.</i> ¹ These can be condensed into				
6		five	e core principles:			
7		1.	Economic Efficiency—The price of electricity should convey to the customer the			
8			cost of producing it, ensuring that resources consumed in the production and			
9			delivery of electricity are not wasted. If the price is set equal to the cost of			
10			providing a kilowatt hour (kWh), customers who value the kWh more than the cost			
11			of producing it will use the kWh and customers who value the kWh less will not.			
12			This will encourage the adoption and use of energy technologies in a way that			
13			provides the most value to the grid, and therefore the greatest benefit to electric			
14			customers as a whole.			
15		2.	Equity—There should be no subsidies between customer types. Each class should			
16			pay for their contribution to the cost of service, not more and not less.			
17		3.	Revenue Adequacy and Stability-Rates should recover the authorized revenues of			
18			the utility and should promote revenue stability. Changing technologies and			
19			customer behaviors make load forecasting more difficult and increase the risk of			
20			the utility either under-recovering or over-recovering costs when rates are not cost-			
21			reflective.			
22		4.	Bill Stability—Customer bills should be stable and predictable while striking a			
23			balance with the other ratemaking principles. Rates that are not cost reflective will			
24			tend to be less stable over time, since both costs and loads are changing over time.			
25		5.	Customer Satisfaction—Rates should enhance customer satisfaction. Rates need to			
26			be relatively simple so that customers can understand them and respond to the rates			

¹ James C. Bonbright, Principles of Public Utility Rates, (Columbia University Press: 1961) 1st Edition.

- by modifying their energy use patterns. Giving customers meaningful cost
 reflective rate choices helps enhance customer satisfaction.
- -

3

4

Q10. Is there an overriding principle among these well-established rate design principles?

- A10: Yes, it is the principle of cost causation. What this means is that the rates should reflect
 the underlying costs incurred to serve customers or load. Ideally, fixed costs should be
 recovered through a fixed monthly charge, capacity costs through a demand charge,
 and energy costs through an energy (volumetric charge). While there might be
 technical (*e.g.*, lack of advanced metering infrastructure) and practical (*e.g.*, customer
 acceptability) constraints that might prevent the implementation of purely cost
- reflective rates, it is advisable to stay true to cost-reflective rates as much as possible.

Q11. Did the Commission issue specific guidance on the rate design standards for electric vehicle charging stations? Please summarize.

- A11: Yes, the Commission has provided the following guidance through Order No. 26,394
 on the electric vehicle rate design standards:²
- i- Electric vehicle charging rate design shall <u>reflect the marginal cost</u> of providing
 electric vehicle charging services to the maximum extent practicable, provided
 that these rates will be updated and reconciled on a regular basis to ensure they
 reflect costs associated with customer usage patterns.
- 20 ii- <u>Declining block</u> rates shall not be used for electric vehicle charging for
 21 separately metered electric vehicle supply equipment (EVSE).
- 22 iii- <u>Seasonal rates</u> may be charged for electric vehicle charging to account for the
 23 seasonality of winter and summer cost drivers on the electric system.
- 24 iv- <u>Interruptible rates</u> are not appropriate for electric vehicle charging.

² State of New Hampshire Public Utilities Commission, IR 20-004, Order No. 26,394 Determining the Appropriateness of Rate Design Standards for Electric Vehicle Charging Stations Pursuant to SB 575.

1	V-	Load management offerings may be an appropriate strategy for electric vehicle
2		rate design, especially when offered in conjunction with electric vehicle time of
3		use rate offerings.
4	vi-	Demand charges may be an appropriate rate design for high demand draw EVSE,
5		but not for residential charging applications. Demand charges may limit the
6		economic viability of low utilization rate, high demand draw EVSE, but also
7		limit cost shifts between classes and customers. Utilities shall consider demand
8		charge alternatives in any high demand draw rate design proposals they may
9		develop.
10	vii-	Time of use rates are appropriate for electric vehicle charging, and required the
11		utilities to file: (1) an EV TOU rate proposal for separately-metered residential
12		and small commercial customer applications; and (2) an EV TOU rate proposal
13		for separately-metered high demand draw commercial customer applications that
14		may incorporate direct current fast charging or clustered level two chargers.
15	Q12. Do	you agree with the Commission's guidance on the rate design standards for
16	elec	etric vehicle charging stations?
17	A12: Yes,	I do. I understand that the Commission instructed utilities to propose demand
18	charg	e alternatives to assist with the economic viability of charging stations, while
19	stayiı	ng as close as possible to the marginal cost principles. While there are other
20	alterr	natives that could help improve the viability of low utilization charging stations,
21	EV T	OU rates would be better aligned with the marginal cost principles. Charging
22	statio	ons may in turn develop pricing strategies in the form of time-based rates to pass
23	on th	ese pricing signals to their customers. This approach is currently being
24	imple	emented by a few charging companies across the country. ³ They may also pursue
25	other	strategies such as installation of load control equipment and solar and storage
26	syste	ms.

³ Fred Lambert, "Tesla introduces new 50% Supercharging discount at night in California to help with capacity," *electrek*, April 5, 2021 at <u>https://electrek.co/2021/04/05/tesla-isupercharging-discount-night-california-help-capacity/</u>

1Q13. What is your recommendation regarding an alternative rate for separately-2metered high-demand draw commercial customer applications?

A13: I recommend that utilities propose an EV TOU alternative to current demand charge 3 based rates for high demand draw commercial customer applications. In the absence of 4 demand charges, this rate is more consistent with the marginal cost principles, while 5 minimizing cross subsidies. At a minimum, utilities might consider removing the 6 demand charges, and spreading the demand charge related cost recovery on the 7 volumetric sales. While this is not the preferred approach, it does not create explicit 8 subsidies such as those created by demand charge holidays and other variations, which 9 stop (often times temporarily) the recovery of the costs originally collected by demand 10 charges. 11

Q14. Did the Commission provide more specific guidance on the recommended 12 parameters for any separately-metered residential electric vehicle charging rate? 13 A14: Yes, in Docket No. DE 20-004 the Commission Staff recommended the following: "1) 14 be based directly on cost causation; (2) incorporate time varying energy supply, 15 transmission, and distribution components; (3) have three periods (e.g., off-peak, mid-16 peak, and peak); (4) be seasonably differentiated (e.g., summer and winter); (5) have an 17 average price differential between off-peak and peak of no less than 3:1; and (6) have a 18 peak period no longer than four hours in duration."⁴ The Commission adopted the 19 Staff guidelines as "useful starting points" in EV TOU rate designs, with two 20 clarifications. The Commission clarified that a five-hour peak duration is more 21 appropriate than the four-hour peak duration, and that the 3:1 ratio should be an annual 22 average differential.⁵ 23

⁴ Order 26,394, page 15-17.

⁵ *Id*.

1 Q15. Do you agree with the "useful starting points" as proposed by the Commission?

2 A15: In general, yes. An effective rate design conveys price signals that are transparent and actionable, giving customers the necessary information and a strong incentive to shift 3 their charging load away from the utility's system peak hours to designated offpeak 4 periods. Currently, roughly 80% of the light-duty vehicle charging takes place at home 5 and this trend is expected to continue in the near future.⁶ Moreover, EVs can be easily 6 programmed through the car and/or the charger to begin charging at a pre-set time. 7 Therefore, it is important to design residential EV TOU rates that provide strong price 8 signals for offpeak charging, and are also appeal to the customers for their participation 9 in these rates. 10

A recent SEPA/Brattle survey has identified the attributes of "successful" EV TOU 11 rates, where success is defined as a high enrollment rate or significant load shifting to 12 offpeak periods. Based on the 28 survey respondents (out of 50 contacted), the price 13 ratios of the rates ranged from 1.2:1 to 15.5:1, with a median of 3.6:1. Survey 14 participants reported that "despite potential savings, some customers are deterred by the 15 initial enrollment fees for the installation of additional metering equipment."⁷ Another 16 Brattle survey of 27 EV TOU rates reported a median peak period duration of 5 hours 17 during the Summer months versus 8 hours during the Winter months.⁸ 18

These observations lend support to Commission's guidance on "useful starting points," although some deviations from these parameters might be reasonable provided that they are justified by underlying system cost and load structures for each utility.

⁶ John Voelcker, "JD Power Study: Electric Vehicle Owners Prefer Dedicated Home Charging Stations," *Forbes wheels*, February 5, 2021 at <u>https://www.forbes.com/wheels/news/jd-power-study-electric-vehicle-owners-prefer-dedicated-home-charging-stations/</u>

⁷ SEPA, "Residential Electric Vehicle Rates That Work: Attributes That Increase Adoption," November 2019.

⁸ Ahmad Faruqui, *et al.*, The State of Electric Vehicle Home Charging Rates: A Summary, presented to Colorado PUC, October 15, 2018 at http://files.brattle.com/files/14717 the state of residential ev electric rates 10-15-2018.pdf

IV. Assessment of Eversource Residential EV TOU Rates and High Demand Draw Alternative

Q16. Please describe your understanding of how Eversource developed their residential EV TOU rates.

A16: Eversource proposed a residential EV TOU rate, "Rate R-EV" that is separately
 metered but connected to the same service as the primary residence. The proposed rate
 is revenue neutral to the residential rate "Rate R" and was developed assuming an
 average residential customer load profile.

9 The rate has three TOU periods: peak, midpeak, and offpeak. A five-hour peak period 10 commences at 2 p.m. and ends at 7 p.m. for all weekdays except holidays; a midpeak 11 begins at 7 a.m. and ends at 11 p.m. each day, except for peak period hours; and all 12 other hours are offpeak. The three periods are established based on the timing and the 13 duration of marginal costs within each service component (generation, transmission, 14 and distribution).

Time periods are non-seasonal and defined based on annual averages of marginal cost, despite the Commission's guidance to establish seasonality. The proposed rate follows the Commission's other guidance in that it establishes a maximum five-hour peak period and attains an annual average of 3.07:1 peak/offpeak ratio before the other flat charges are included and 2.7:1 peak/offpeak ratio after the other charges are accounted for (see Table 1).

21

TABLE 1: PROPOSED RESIDENTIAL EV TOU RATE (\$ PER KWH)

	Generation	Transmission	Distribution C	ther Charges	Total
	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)
Peak	\$0.103	\$0.087	\$0.064	\$0.016	\$0.271
Midpeak	\$0.062	\$0.021	\$0.060	\$0.016	\$0.159
Offpeak	\$0.050	\$0.012	\$0.021	\$0.016	\$0.099
	Peak	:Offpeak			
Ratio	2.7	:1			

22	
23	
24	

Note: Other charges include SCRC, SBC, and other volumetric charges. Customer charge is \$16.50 per month.

1	For each service component, TOU rates are determined by adjusting the revenue target
2	for the marginal cost differences between the time periods. Marginal costs are allocated
3	on an hourly basis over the course of the year, using a proprietary model determining
4	each hour's expected probability of being the annual peak for each service component.
5	These hourly marginal costs are then assigned to TOU periods by averaging them by
6	period. Charges for each service component are obtained as the following:
7	• Distribution : Hourly marginal distribution costs are obtained from the 2019/20
8	marginal cost of service (MCOS) study, which yielded monthly marginal costs due to
9	customers, local distribution facilities, and distribution substation costs. These costs
10	are then annualized and adjusted for 2021 dollars. The allocation of the annualized
11	distribution cost to hours is based on each hour's expected probability of being the
12	annual peak at the distribution substation level, using hourly load from 2015 through
13	2018.
14	• Transmission: The Company's ISO-NE monthly Regional Networks Service (RNS)
15	rate (\$/kW-year) is allocated to each hour, based on the probability that each hour
16	will be that month's peak hour in the transmission system.
17	• Generation: Hourly marginal costs are obtained based on hourly ISO-NE locational
18	marginal prices (LMPs), forward capacity market (FCM) capacity prices (based on
19	probability of peak analysis to allocate yearly price to hours), marginal losses,
20	Renewable Portfolio Standard (RPS) costs, energy and RPS reconciliation factors,
21	and working capital expenses.
22	Q17. Please describe how Eversource calculated the customer charge for the residential
23	EV TOU rates.
24	A17: The customer charge for the residential EV TOU rates is \$16.5 per month. This is
25	reduced compared to the customer charge of \$32.08 per month of the current
26	residential time of day rate (R-OTOD), because local facilities cost is removed from
27	the customer charge and built into the TOU volumetric prices in the peak and midpeak

28 periods. If a customer charges an EV during offpeak hours, they would not be charged

11

- for the local facilities costs. This is intended to signal the need for increased local
 capacity during midpeak or peak periods.
- Q18. Did Eversource propose a plan for exploring EVSE embedded metering
 capabilities that could mitigate the second meter costs necessary to implement
 separately metered EV TOU rates?
- A18: No, not at this time. I understand that the Commission has expressed an interest for
 utilities to further explore EVSE embedded metering capabilities that could potentially
 increase the adoption of EV TOU rates by mitigating the additional meter costs.⁹ I
 encourage the Company to design a pilot/demonstration program to understand the
 technical feasibility of this option.
- 11 Q19. What is your assessment of Eversource's proposed EV TOU rate?
- A19: I found that the design of the Eversource EV TOU rate is generally consistent with the 12 well-established marginal cost-based rate design principles. Number of periods, length 13 of the peak and super-offpeak periods are designed in a way to incentivize efficient 14 charging behavior consistent with the system marginal cost signals. These price signals 15 can be further improved if the rates are differentiated by season reflecting seasonal 16 considerations in the allocation of generation, transmission, and distribution costs. EV 17 customers charging their EVs under this rate structure will observe cost savings if they 18 are able to shift their charging load to the offpeak period. This in turn will help reduce 19 current and future system costs. 20
- 21 Unfortunately, it is my understanding that Eversource does not recommend 22 implementation of this rate at this time.

23 Q20. Why is the Company unable to implement this rate at this time?

A20: While the Company submitted the proposed rate described above in Docket No. DE 25 20-170, the Company does not recommend near-term implementation of a separately 26 metered EV TOU rate due to substantial modification needed to enterprise-wide

⁹ Order 26, 394, page 13.

MDMS and CIS systems. Eversource projects \$9 million of costs would be associated with the upgrade necessary to offer either a three period rate or a time of use generation component. Eversource projects that, after the future conversion of the enterprise systems, cost associated with offering either a three period rate or time-varying generation would still be approximately \$5 million.¹⁰ Eversource is also planning to update all of its customer systems over the next three-four years as a result of a recent order in Massachusetts directing them to develop a timeline for AMI deployment.¹¹

Q21. Please describe the Company's existing customer billing system and time of use rate offerings.

A21: As a basis for its recommendation against its time-varying generation rate, Eversource 10 states that it "utilizes one legacy customer billing system across three states" and cites 11 \$9 million of costs relating to "regression testing to ensure no impact to other state 12 jurisdictions with this change."12 However, the Company's Connecticut affiliate 13 already offers a two period time-varying rate that includes a time-varying generation 14 component for residential customers,¹³ small general service customers,¹⁴ a small 15 general service customer alternative rate that appears to be the Company's Connecticut 16 electric vehicle demand charge alternative,¹⁵ intermediate general service customers,¹⁶ 17 and large general service customers.¹⁷ Given that the Company utilizes one legacy 18 customer billing system across three states, and given that the Company's Connecticut 19

¹⁰ Attachment SIS-2 (Eversource Response to Request Energy 2-019). See also Attachment SIS-3 (Eversource Response to Request Energy 3-008, Attachment 1).

¹¹ Joint Testimony of Dennis E. Moore, Brian J. Rice and Michael R. Goldman, Docket No. DE 20-170, page 11.

¹² Attachment SIS-4 (Eversource Response to Request Energy 3-001).

¹³ Connecticut Light and Power. Rate 7. <u>https://www.eversource.com/content/docs/default-source/rates-tariffs/ct-electric/rate-7-ct.pdf?sfvrsn=8224c062_24</u>

¹⁴ Connecticut Light and Power. Rate 27. https://www.eversource.com/content/docs/default-source/ratestariffs/ct-electric/rate-27-ct.pdf?sfvrsn=7d24c062_26

¹⁵ Connecticut Light and Power. Rate 27a. https://www.eversource.com/content/docs/default-source/ratestariffs/ct-electric/rate-27a-ct.pdf?sfvrsn=b600a362_4

¹⁶ Connecticut Light and Power. Rate 37. https://www.eversource.com/content/docs/default-source/ratestariffs/ct-electric/rate-37-ct.pdf?sfvrsn=a24c062_24

¹⁷ Connecticut Light and Power. Rate 58. https://www.eversource.com/content/docs/default-source/ratestariffs/ct-electric/rate-58-ct.pdf?sfvrsn=e441c762_48

affiliate clearly has the ability to offer a two period time varying rate with a time 1 2 varying generation component, it seems that the Eversource should be able to offer a two period time-varying generation component to New Hampshire ratepayers. I have 3 structured the remainder of my testimony under this assumption. 4

5 6

Q22. What is your recommendation if the Company is unable to offer a time-varying generation component?

7 A22: If for some reason the Company is unable to provide such an offering, I recommend that the Commission direct the Company to conduct an RFP process to seek third 8 parties who can provide three period time of use rates, inclusive of a time varying 9 10 generation component, as a service to the Company on a pilot basis for separately metered electric vehicle customers. The RFP could be structured so that the metering 11 and billing occurs independent of the Company's legacy systems and could utilize the 12 metering technology embedded in most chargers. This approach has the potential to 13 avoid costly upgrades to legacy systems. The RFP process should be stakeholder 14 inclusive, and the Department of Energy and other interested stakeholders should have 15 an opportunity to weigh in on responding proposals before the Commission. 16

17

Q23. 18

Does Eversource offer any other residential TOU rate that might be available to **EV customers?**

- A23: Yes. Eversource has proposed a new residential time-of-use rate in DE 21-119.¹⁸ This 19
- rate has two periods including a seven hour peak period (noon -7 p.m.) during non-20
- holiday weekdays and offpeak hours, covering all other hours. Eversource's proposed 21 rate is reproduced in Table 2 below. 22

¹⁸ Eversource's testimony also set forth a load management proposal as an alternative to time of use rates. I do not address this proposal in my testimony because load management proposals were not a noticed issue in this proceeding and are currently a matter pending Commission decision in DE 20-092. See, DE 20-092, December 21, 2020 Transcript at page 139, lines 8-15. Available at: https://www.puc.nh.gov/Regulatory/Docketbk/2020/20-092/TRANSCRIPTS-OFFICIAL%20EXHIBITS-CLERKS%20REPORT/20-092 2021-01-06 TRANSCRIPT 12-21-20.PDF

Total

	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)
Peak	\$0.066	\$0.074	\$0.028	\$0.020	\$0.188
Offpeak	\$0.066	\$0.017	\$0.023	\$0.020	\$0.126
	Peak :O	offpeak			
Ratio	1.5 :1				
Note: Other ch	arges include SC	RC and SBC. C	ustomer charge is	\$32.08 per mont	h.
In addition to	the variable ch	arges reporte	d in Table 2, th	nis rate also in	volves a custor
charge of \$32.	08 per month,	which is mor	e than twice Ev	versource's res	sidential custor
charge of \$13	81				
Q24. What is you	ır assessment	of Eversour	e's two perio	d residential [ΓOU rate?
A24: While this new	wly proposed 1	residential TC	U rate is an in	provement ov	ver Eversource
existing TOU	rate, which in	cludes an 11-	hour peak peri	od, there is sti	ll room for
	,				
improvement	to make this ra	ate better alig	ned with marg	inal cost signa	ls and more
improvement attractive for t	to make this rather customers.	ate better alig	ned with marg	inal cost signa	ls and more
improvement attractive for t	to make this rathe customers.	ate better alig More specifi	ned with marg	inal cost signa	ls and more
improvement attractive for tThe peak to	to make this rathe customers.	ate better alig More specifi ?) ratio purely	ned with marg cally: based on the t	inal cost signa ime-varying co	ls and more omponents of t
 improvement attractive for t The peak to rate (distribution) 	to make this rathe customers. offpeak (P/OF	ate better alig More specifi ?) ratio purely mission) is 2.	ned with marg cally: based on the t 6. However, w	inal cost signa ime-varying co hen other vari	ls and more omponents of t able charges in
 improvement attractive for t The peak to rate (distributhe rate designed) 	to make this rathe customers. offpeak (P/OF ation and trans gn are include	ate better alig More specifi P) ratio purely mission) is 2. d to create an	ned with marg cally: based on the t 6. However, w "all-in variabl	inal cost signa ime-varying co hen other vari e" charge for b	ls and more omponents of t able charges in ooth peak and
 improvement attractive for t The peak to rate (distributhe rate design offpeak rates) 	to make this rathe customers. offpeak (P/OF ation and trans gn are includes s, the peak to o	ate better alig More specifi P) ratio purely mission) is 2. d to create an offpeak ratio b	ned with marg cally: based on the t 6. However, w "all-in variabl pecomes 1.5. P	inal cost signa ime-varying co hen other vari e" charge for b rior Brattle res	ls and more omponents of t able charges in both peak and search has show
 improvement attractive for t The peak to rate (distributhe rate design offpeak rates that the P/OI 	to make this rathe customers. offpeak (P/OF ation and trans gn are include s, the peak to o P ratios below	ate better alig More specifi P) ratio purely mission) is 2. d to create an offpeak ratio b 2 will not suf	ned with marg cally: based on the t 6. However, w "all-in variabl becomes 1.5. P ficiently incen	inal cost signa ime-varying co hen other vari e" charge for b rior Brattle res tivize custome	ls and more omponents of t able charges in both peak and search has showers to change
 improvement attractive for t The peak to rate (distribu the rate design offpeak rates that the P/OI their consum 	to make this rathe customers. offpeak (P/OF ation and trans gn are include s, the peak to o P ratios below aption patterns	ate better alig More specifie P) ratio purely mission) is 2. d to create an offpeak ratio to 2 will not sufts and a ratio o	ned with marg cally: based on the t 6. However, w "all-in variabl becomes 1.5. P ficiently incen f at least 3 is ic	inal cost signa ime-varying co hen other vari e" charge for b rior Brattle res tivize custome leal to incentiv	Is and more omponents of t able charges in both peak and search has show ers to change vize customers

TABLE 2: PROPOSED R-OTOD-2 RATE (\$/KWH)

Distribution

Other Charges

Generation Transmission

1

¹⁹ Nova Scotia Power Time-Varying Pricing Project Submission to Nova Scotia Utility and Review Board, June 30, 2020. <u>https://brattlefiles.blob.core.windows.net/files/19479_nova_scotia_utility_and_review_board_-_time-varying_pricing_project_submission.pdf</u>

A peak period of seven consecutive hours is typically considered long from a
 customer experience point of view. Given that this rate will apply to the whole house
 load, customers may find it difficult to shift their usage for the seven hour period,
 impacting their willingness to sign up for this rate. Reducing peak period duration to
 five hours might be ideal, which will also help with creating stronger peak period
 price signals as the peak period costs will now be allocated to five hours, instead of
 seven.²⁰

8 Eversource's 2019 Marginal Cost study estimated monthly marginal customer costs 9 (including meter and service drop, customer expenses) by customer class, monthly marginal local distribution facilities costs (transformers, primary and secondary 10 conductors) by customer class, and distribution substation costs. It is our 11 understanding that Eversource's proposed customer charge of \$32.08 includes both 12 13 the marginal customer costs and marginal local distribution facilities costs. It may be reasonable to exclude the marginal local distribution facilities cost from the proposed 14 customer charge and recover these additional costs in the distribution peak chargers. 15 16 This would serve two purposes: 1) it will provide the customers with a stronger price signal during the peak period and incentivize them to reduce their peak demand; and 17 2) by lowering peak demand during the peak period, it will help lower future capacity 18 needs. In fact, this approach was used by Eversource in their design of the three 19 period EV TOU rate, where the costs of the local transformer were recovered in the 20 volumetric rate component outside of the offpeak period in order to provide price 21 signals that encourage offpeak (overnight) EV charging and discourage charging at 22 23 times that may cause the need for additional local facilities' capacity and thereby cause incremental costs to be incurred at the individual customer level (e.g., increased 24 transformer/service requirements).²¹ 25

²⁰ Ahmad Faruqui, Ryan Hledik, Sanem Sergici. "A Survey of Residential Time-Of-Use (TOU) Rates", November 12, 2019. <u>https://www.brattle.com/wp-</u> content/uploads/2021/05/17904 a survey of residential time-of-use tou rates.pdf

²¹ Testimony of Edward A. Davis, Docket No. DE 20-170, page 5-6.

1	• Eversource's proposed two-period residential TOU rate does not include seasonal
2	variation. Seasonal variation may improve the quality of the price signals, and more
3	accurately attribute costs that are driven by seasonal demand elements (<i>i.e.</i> ,
4	generation capacity costs are driven by summer peak periods). I analyzed
5	Eversource's class load profile and found that May through September are more
6	closely clustered together and have similar load shapes compared to the other months.
7	Therefore, May through September should be defined as the summer months for rate
8	design purposes.
9	• Eversource's proposed two-period residential TOU rate does not include a time-
10	varying generation component.
11	Q25. How can Eversource improve its two period residential TOU rate to provide
12	stronger price signals to customers for load shifting and at the same time improve
13	its attractiveness?
14	A25: Given that Eversource will not be able to implement its proposed three-period EV TOU
15	rate at this time, and that the two-period TOU rate will be the transitional rate to
16	incentivize efficient charging of the EVs, I recommend that Eversource revises its two-
17	period residential TOU rate to account for the areas of concern listed above. A
18	seasonally differentiated two-period rate with a shorter peak window that reflects the
19	marginal facility costs and a lower customer charge is more likely to be attractive to
20	customers both with and without EVs.
21	Q26. Does Eversource have a marketing plan in place to market EV TOU rates to its
22	customers with electric vehicles?
23	A26: No, I am not aware of any formal plans and marketing budget allocated to effectively
24	marketing EV TOU rates to customers. Increased adoption of EV TOU rates will
25	benefit customers in the form of bill savings if they can shift their charging to offpeak
26	periods. It will also benefit Eversource and other customers as the demand during
27	system peak hours are moderated (due to customers shifting their charging load to
28	offpeak periods) and avoid costly expansions. I strongly encourage the Company to

17

- develop a targeted marketing plan with the objective of increasing the uptake of the
 TOU rates among the EV customer population.
- Q27. Please describe your understanding of how Eversource developed their high draw
 demand charge alternative rate design.

A27: In Docket No. DE 21-078, Eversource proposes a rate for public EV charging stations
as an alternative to its Rate GV service, which it offers to customers with no more than
1,000 kW of peak demand.²² The proposed rate is a demand-charge alternative rate
design; however, it is not TOU-based as instructed by the Commission. The rate is
designed for charging station utilization of up to 10%, where utilization below 10%
results in lower monthly charges than would occur under Rate GV.

- Rate components for the EV demand-charge alternative rate design include a customer charge and a volumetric charge. The customer charge is maintained at \$211.21/month, as it is for the Rate GV class. The volumetric charge portion recovers two types of costs:
- Demand charges related to distribution, transmission, and stranded cost recovery.
 Revenue requirements for demand charges associated with distribution, transmission,

and stranded cost recovery charges (SCRC) are each divided by the class's annual
kWh consumption to obtain an average class rate on a \$/kWh basis. These values are
then multiplied by a "rate parity adjustment" which is obtained by dividing the
current class average load factor (55%) by station utilization, which is assumed to be
10%.

Volumetric charges related to energy supply, system benefits charge, and remaining
 stranded cost recovery charges. These costs are recovered from Rate-GV customers

²² Eversource's demand charge alternative was docketed as part of DE 21-078. In the October 16, 2020 Order of Notice in DE 20-170, the Commission delineated the noticed issues in this proceeding as including "issues related to whether the EV TOU rate proposals to be developed and filed are consistent with the rate design standards delineated in Order No. 26,394." Order No. 26,394 directed the utilities to file high demand draw proposals in this proceeding that may consider demand charge alternatives. Liberty and Unitil have both filed their demand charge alternatives in this proceeding. For ease of review, and as a matter of administrative efficiency, I have chosen to present my assessment of all three demand charge alternative proposals in this proceeding.

- on a \$/kWh volumetric basis, therefore were not modified from their values for the
 Rate GV rates, which is \$0.074/kWh.
- Company's proposed demand-charge alternative volumetric rate is the sum of the two components described above.
- 5 Q28. Do you expect that Eversource's proposed high draw alternative to demand 6 charges will lead to cost shifting to other customers within the class?

7 A28: Yes, I do. As it is currently designed, the Company's proposed rate is revenue neutral at 10% station utilization level. Below 10% utilization, the customers on this rate will 8 pay less than their fair share of the system costs leading to a cost shift to other 9 customers, and above 10%, if they choose to remain on this rate, will pay more than 10 their fair share of the system costs. The Company's witness Mr. Davis acknowledges 11 this issue in his response to DOE 2-007 (d) in DE-20-170, "...Indicatively, under the 12 Company's proposal, lower utilization than the level applied in rate design (i.e., 10%) 13 14 would produce less revenue which could represent a reduction in cost recovery compared with application of a demand charge."²³ 15

- Q29. Did the Company also develop an EV TOU rate proposal for separately-metered
 high demand draw commercial customer applications, as instructed by the
 Commission? If not, please convey Company's reasoning.
- A29: No, it did not. The Company reasons that "... the timing of public EV charging is 19 largely non-discretionary... While a TOU rate may be introduced for these types of 20 charging applications, the Company expects that consumers who charge their EVs at 21 22 public stations would not generally be in a position to defer or otherwise schedule charging to a different time. Those who could shift charging might do so, but the 23 design proposed here is particularly for public DCFC applications where charging is 24 expected to occur on demand, when needed, independent of potential time-25 differentiated pricing alternatives."24 26

²³ Attachment SIS-5 (Eversource Response to DOE 2-007).

²⁴ Testimony of Edward A. Davis, Brian J. Rice and Kevin M. Boughan, Docket No. DE 21-078, page 22.

1 Q30. Do you agree with Company's reasoning? Please explain.

2 A30: No, I do not. First, it is my understanding that this Commission has a long-standing emphasis on cost-reflective rate design based on marginal costs and has instructed 3 utilities that "...Initial electric vehicle charging rate design shall reflect the marginal 4 cost of providing electric vehicle charging services to the maximum extent practicable, 5 provided that these rates will be updated and reconciled on a regular basis to ensure 6 they reflect costs associated with customer usage patterns."25 In the absence of demand 7 charges, TOU rates are the next best alternative conveying marginal price signals and 8 providing incentives for a more efficient use of the grid for high draw customers. 9

Second, the Company should not second guess the abilities of its public station owners 10 to pass on some of these efficient price signals to their own customers. When faced 11 with a TOU rate that charges them higher rates during the peak period, the owners of 12 the public chargers may introduce innovation into their own rate structures, and charge 13 higher rates to their customers during peak periods. This is in fact starting to happen in 14 California, where several Tesla stations are implementing time-varying charging 15 rates.²⁶ It is possible that there are other examples. It is also possible that some of the 16 customers using the public charging stations are not able to defer charging and in those 17 cases, they will need to pay the higher prices because this reflects the true cost of 18 charging their EVs during the peak period. If they do not pay this cost, other customers 19 will have to pay for it. 20

Third, it is argued that if public charging stations proliferate rapidly (perhaps partially due to subsidized rates), EV adoption might increase as a result of reduced range anxiety and that increased transportation electrification may lead to potentially lower rates for all customers in the long run, as the system fixed costs will be spread over a higher level of sales (all else equal), justifying the initial subsidies. While this may be true, these subsidies are often justified by "state public policy," in which a state officially embraces "increased electrification" as part of the official state energy policy.

²⁵ Order No. 26,394 at 4-5.

²⁶ https://electrek.co/2021/04/05/tesla-isupercharging-discount-night-california-help-capacity/

1 In the absence of any public policy justification, subsidized rates for these public 2 stations at the expense of other customers are not warranted.

- 3 4

Q31. In your opinion, are subsidized rates for public charging infrastructure warranted in New Hampshire?

A31: No, I do not believe so. New Hampshire Senate Bill 131 Part I²⁷ includes "findings" 5 regarding increased availability of charging infrastructure; however, these statements 6 7 are only dicta and do not indicate that a policy is in effect. SB 131 Part I findings state that the availability of electric vehicle supply equipment, and in particular DCFC along 8 major travel corridors in the state, is critical to facilitating the deployment of electric 9 10 vehicles and recommends the state to commit to the development of EV technology and infrastructure. The legislation also suggests electric distribution companies may 11 own or fund make-ready infrastructure to accelerate EV deployment. However, this 12 legislation does not mention subsidized rates as one of the strategies to support EV 13 14 charging infrastructure. Other legislation, specifically NH RSA 236:132–136, includes statements that are generally supportive of electric vehicles; however, does not endorse 15 any particular rate design. 16

In fact, subsidized rates would conflict with the Commission's guidance to avoid cross-17 subsidies. The Commission states that a modern distribution planning process should 18 ensure new electrified end uses are integrated onto the grid in a manner that does not 19 unfairly subsidize participants to the detriment of non-participating ratepayers through 20 peak load growth.²⁸ Similarly, New Hampshire 10-Year State Energy Strategy²⁹ 21 encourages private entities to invest in charging infrastructure by using ratepayer 22 funding sources; however, warns against cost shifting for the sake of benefiting a small 23 24 user base.

²⁷ New Hampshire Senate Bill 131, Part 1

²⁸ State of New Hampshire Public Utilities Commission, IR 15-296, Order 26,358 Guidance on Utility Distribution System Planning And Order Requiring Continued Investigation.

²⁹ New Hampshire 10-Year State Energy Strategy, New Hampshire Office of Strategic Initiatives. April 2018. https://www.nh.gov/osi/energy/programs/documents/2018-10-year-state-energy-strategy.pdf

Q32. Have you evaluated alternatives to demand charges for high demand draw public charging stations offered in other jurisdictions?

A32: Yes, I have. Table 3 presents my review of several jurisdictions offering demand 3 charge alternatives for high demand draw customers. Alternatives include demand 4 charge holidays, demand subscription rates, TOU rates, capped rates for low-utilization 5 customers, demand limiters for low-utilization customers, demand charge credits, and 6 lower demand charge/higher volumetric rate options for low load factor customers. 7 Based on my review of these alternative rates for high-demand draw customers, there is 8 not a uniform alternative used by most utilities. It is most likely that these offerings are 9 a product of unique circumstances of each utility's regulatory and public policy 10 environment. 11

TABLE 3: REVIEW OF ALTERNATIVES TO DEMAND CHARGES FOR HIGH DE	EMAND
DRAW CUSTOMERS	

Utility	Rate Schedules & kW	Components of Rate	Demand Charge Alternative &
	Threshold	Schedule	Presence of Cross Subsidy
Southern	TOU-EV-7 (< 20 kW)	Customer Charge: ✓	Demand Charge Holiday;
California Edison	TOU-EV-8 (20 - 500 kW)	Energy Charge: ✓	Customers receiving service under this schedule
		Demand Charge: \times (until	will not face a Demand Charge until March
	100-EV-9 (>300 KW)	2024) Time Of Use Detect	2024. Starting in 2024, the Demand Charge will
		Time Of Use Rates: •	be phased-in over a 5-year period.
Pacific Gas &	BEV-1 (<= 100 kW)	Customer Charge: ×	Replaces traditional maximum kW demand
Electric	$\mathbf{PEV}(2 > 100 \text{ kW})$	Energy Charge: ✓	charge with subscription-based payment for
	DEV-2(>100 KW)	Demand Charge: \times	customer selected monthly kW allocation.
		Time of Use Rate: ✓	Customers incur an 'overage' fee (\$/kW) if the
			kW usage exceeds a customer's self-designated
			subscription level.
Dominion Energy	Non-Demand Billing	Customer Charge: ✓	Customers who face 'Demand Billing' (>200
	(< 200 kW)	Energy Charge: ✓	kW) are subject to a distribution demand charge
	Demand Billing	Demand Charge: ✓ (for	of \$3.183 per kW whereas customers who face
	(> 200kW)	>200 kW)	'Non-Demand Billing' (<200 kW) have no
		Time of Use Rate: ×	distribution demand charge
Portland General	Schedule 38	Customer Charge: ✓	TOU Rate with no demand charge for customers
Electric	(<200 KW)	Energy Charge: V	with demand< 200 kw;
		Time of Use Pote: x	Customers face an energy TOU rate
		Time of Use Kale. •	(\$0.0607/kWh during the peak period;
			\$0.0457/kWh during the offpeak period).
			Distribution and transmission charges are
			volumetric, but are not time based.

Utility	Rate Schedules & kW Threshold	Components of Rate Schedule	Demand Charge Alternative & Presence of Cross Subsidy
	1 m conord	benedute	
Duke Energy	Rate Schedule DS (<500 kW)	Customer Charge: ✓ Energy Charge: ✓ Demand Charge: ✓ Time of Use Rate: ×	Demand Charge Limit; Duke Energy calculates an initial bill based on a fixed customer charge, demand charge and energy charge and divides this initial bill by total energy consumption to derive an implied average rate in \$/kWh. If this implied average rate exceeds the predetermined capped rate of \$0.241/kWh, the customer's bill is calculated at the lower capped rate.
PECO Energy Company	Rate Schedules GS, PD and HT (No kW threshold)	Customer Charge: ✓ Energy Charge: ✓ Demand Charge: ✓ Time of Use Rate: ×	3-year Demand Charge Credit; PECO offers commercial EV charging facilities a credit (equal to 50 percent of the connected DCFC capacity) against any demand charges for up to 36 months. This offer is valid until 2024.
Florida Power & Light	GSD-1EV (20 kW – 499 kW) GSLD-1EV (500 kW – 2000 kW)	Customer Charge: ✓ Energy Charge: ✓ Demand Charge: ✓ Time of Use Rate: ×	Demand Limiter for Low Usage Customers; Under the tariffs, the amount of demand billed to the customer would be the lesser of measured demand or the 'limited' demand calculated by dividing the kWh sales by a fixed constant of 75 hours. Tariff effective for five years.
Xcel Energy for Colorado	Rate Schedule SGL	Customer Charge: ✓ Energy Charge: ✓ Demand Charge: ✓ Time of Use Rate: ×	Low load factor (<30%) customers receive a distribution demand charge and seasonal energy charge. Demand charge is lower and energy charge is higher for these customers compared to the secondary general service customers.
BGE	Rider 5, available to non- residential customers on Schedules GL or P	Schedules GL or P Customer Charge: ✓ Energy Charge: ✓ Demand Charge: ✓ Time of Use Rate: ✓	Demand Charge Credit; The demand charge credit amount is calculated as 50% of the aggregated maximum demand of charging location for L2 EV chargers and/or DC Fast EV chargers. Rider available through December 31, 2023 or for 30 months from the date of approval.
National Grid	Available to non-residential customers on General C&I Rate G-02 or Large Demand Rate G-32 for dedicated DCFC purposes	G-02 and G-32 Customer Charge: ✓ Energy Charge: ✓ Demand Charge: ✓ Time of Use Rate: ✓ (for G-32)	Demand Charge Credit; The monthly bill discount is based on a per-kW credit set at the same rate as the distribution demand charge for a three-year period beginning with the start of service.

Q33. Did you design an EV TOU rate as an alternative to Eversource's Rate GV rate, which is the rate available to high-demand draw customers?

A33: Yes, I have. I designed an illustrative EV TOU rate for the Rate GV class, using data 3 available from Eversource's workpapers submitted in Docket No. DE 20-170 as well as 4 data responses to intervenor questions. While this rate is designed largely based on the 5 most recent publicly-available Eversource data, it should be viewed as illustrative at 6 this time. There are several reasons for this: 1) while we made an effort to use the most 7 recent data in our rate design, it may very well be that Eversource may have more 8 recent data for various parts of our rate design analysis; and 2) some of the data, such 9 as "probability of peak" which underlie Eversource's allocation of marginal costs to 10 pricing periods, was not provided in full. Therefore, we have not had a chance to fully 11 review the reasonability of these allocations and have developed our own. 12

13 Q34. Please describe the High-Demand Draw EV TOU rate you have designed.

A34: I have designed a two-period, seasonal EV TOU rate, which is revenue neutral to the 14 15 Rate GV rate. This rate eliminates the demand charge and allocates the revenues that would have been recovered by the demand charge to distribution component of the 16 TOU rate. I maintained the customer charge at \$211.21 per month, as in the Rate GV 17 rate. I adopted the peak period definition used by the Company, which is 12 p.m. to 18 7 p.m. during weekdays and all other hours are offpeak. Summer is defined as May 19 through September, while winter is defined as October through April based on my 20 analysis of Eversource's system load profile. As presented in Table 4, this rate results 21 in a peak to offpeak ratio of 4.2:1 in the summer and 2:1 in the winter. 22

	Generation (\$/kWh)	Transmission (\$/kWh)	Distribution (\$/kWh)	Other charges (\$/kWh)	Total (\$/kWh)
Summer					
Peak	\$0.158	\$0.106	\$0.031	\$0.016	\$0.310
Offpeak	\$0.034	\$0.000	\$0.024	\$0.016	\$0.074
Winter					
Peak	\$0.057	\$0.093	\$0.024	\$0.016	\$0.190
Offpeak	\$0.056	\$0.006	\$0.022	\$0.016	\$0.099
	Peak	:Offpeak			
Summer ratio	4.2	:1			

TABLE 4: ENERGY'S ILLUSTRATIVE HIGH-DEMAND DRAW EV TOU RATE FOR EVERSOURCE (\$ PER KWH)

1	
2	
3	

Winter ratio

Note: Other charges include SCRC, SBC, and other volumetric charges. Customer charge is kept at \$211.21/month as in Rate GV.

1.9 :1

Q35. Please explain how you designed the energy supply component of the EV TOU rate.

A35: I first obtained the annual energy supply revenue requirement for Rate GV by 6 multiplying the Rate GV total annual load by the energy supply rate of \$0.06025 /kWh, 7 which was provided by Eversource in DE 20-170.³⁰ I allocated 20% of this revenue to 8 FCM and the remaining 80% to non-FCM costs.³¹ FCM costs were allocated only to 9 summer peak hours as the capacity obligation is driven by the coincidence of Company 10 system peak load with ISO-NE peak which has historically happened in the summer. 11 The FCM-related rate was obtained by dividing the FCM costs by the load in the 12 13 summer peak periods. I allocated the non-FCM revenue requirement to winter and summer seasons in proportion to the marginal costs of generation in winter and 14 15 summer.

³⁰ Attachment SIS-6 (DE 21-078 Eversource Response to DOE 1-001 Attachment EAD-2 Workpaper).

³¹ FCM constitutes approximately 20% of the annual value of wholesale electricity markets. Eric Johnson, Overview of Wholesale Electricity Markets: New England Energy Vision Wholesale Markets Design Technical Forum, ISO New England, January 13, 2021, page 16. https://www.iso-ne.com/staticassets/documents/2021/01/isone_overview_and_regional_update_wholesale_markets_2020_1_13_final.pdf

After obtaining the revenue requirements for winter and summer, I allocated it to TOU periods within each season. First, I calculated a marginal rate for each TOU period by dividing the total marginal costs across each TOU period by the total load in that same period. Next, I calculated an average marginal rate by dividing the total marginal costs in the season by the total seasonal load. I applied the ratios between these marginal rates by period and average marginal rate to the average rate implied by the revenue requirement to derive the energy supply component of the TOU rate.

8

Q36. Please explain how you designed the transmission component of the EV TOU rate.

A36: I first obtained the annual transmission revenue requirement for Rate GV from the
 materials provided by Eversource in DE 20-170.³² I then allocated the annual revenue
 to winter and summer months based on the seasonal proportions of the transmission
 revenue in 2020 according to the TCAM proceeding in DE 21-109.³³

After obtaining the seasonal transmission revenue requirement, I allocated it to TOU periods based on the probability of ISO-NE monthly peak hours occurring in each TOU period. These probabilities were calculated based on the frequency of ISO-NE monthly peak hour occurrence during each TOU period from 2010 to 2020.

Next I calculated the TOU rates by dividing the revenue allocated to each TOU period
by the total load in that period.

19 Q37. Please explain how you designed the distribution component of the EV TOU rate.

- A37: I first obtained the annual distribution revenue requirement for Rate GV from
- 21

Eversource's workpapers submitted in DE 20-170.³⁴ To allocate the annual revenue

³² Attachment SIS-6 (DE 21-078 Eversource Response to DOE 1-001 Attachment EAD-2 Workpaper).

³³ Docket No. DE 21-109 Joint Testimony of Erica L. Menard and James E. Mathews. Attachment ELM-1 Page 7-8. <u>https://www.puc.nh.gov/regulatory/Docketbk/2021/21-109/INITIAL%20FILING%20-%20PETITION/2021-109_2021.07.20_EVERSOURCE-ATT-JT-TESTIMONY-MENARD-MATHEWS.PDF</u>

³⁴ Attachment SIS-6 (DE 21-078 Eversource Response to DOE 1-001 Attachment EAD-2 Workpaper).

requirement to TOU periods within winter and summer months, I performed the 1 following calculations. Starting with the hourly system load profile,³⁵ I took the square 2 of the load in each hour and then summed up the squared loads for all 8760 hours. I 3 calculated each hour's percentage allocation based on its squared load. I applied this 4 allocation to the annual distribution revenue requirement and summed up the allocated 5 costs by season and period. Next, I divided the revenue allocated to each TOU period 6 by the total Rate GV load in that period to obtain the distribution component of the 7 TOU rates. 8

9 This approach has allowed me to emphasize the contribution of high demand hours in 10 driving the distribution system investment needs, and assign a higher percentage of the 11 distribution revenue requirement to these high demand hours.

Q38. Do you consider this proposed EV TOU rate to be a more economically efficient and equitable rate compared to Eversource's demand charge alternative?

14 A38: Yes, I do. EV TOU rates more accurately reflect the marginal cost of providing service to the customers. Customers are expected to consume electricity up to the point their 15 marginal benefit is equal to the marginal cost of electricity. When they respond to these 16 price signals and moderate their usage, then future utility investments in additional 17 peak capacity can also be moderated. To the extent that the customers do not respond 18 to price signals and continue to demand electricity during most expensive times for the 19 grid, then they end up paying for the demand they impose on the system. This implies 20 that this rate is more equitable, collecting the higher charges from customers who 21 impose a higher demand on the system. Moreover, EV TOU rates for high demand 22 draw EV charging applications send more economically efficient price signals such 23 that owners of these charging stations can similarly pass on these costs to their 24 customers. They might also invest in distributed generation resources (solar plus 25 battery storage) to be able to manage higher peak period prices. 26

³⁵ Hourly load profiles were obtained from Docket No. DE 21-078 Eversource Response to DOE 1-013 Q-DOE 1-013 DOE 1-013 Attachment 1.

V. Assessment of Liberty Residential EV TOU rates and ² High Demand Draw Alternative

Q39. Please describe your understanding of how Liberty developed their residential EV TOU rates.

A39: Liberty did not present new residential EV TOU rates in DE 20-170 because the
Company's residential EV TOU rates were approved in DE 19-064 and have been in
effect. However, I understand that this rate was approved as a pilot rate in the battery
storage pilot (DE 17-189).

Liberty's residential EV TOU rate has two seasons, summer (May–October) and winter
(November–April). The rate structure includes three TOU periods, namely offpeak
(OPP), midpeak (MPP), and critical peak (CPP). Weekends and holidays have only
midpeak and offpeak periods. Customer charge is set at \$11.35 per month. The TOU
periods are assigned time-varying energy supply, transmission, and distribution service
components. The charges for these three service components are calculated as follows:

- **Energy supply**: This component is calculated based on real time LMP, ancillary 15 • costs, FCM costs, RPS costs, and other costs. Hourly LMP and ancillary charges are 16 used to calculate load-weighted average hourly costs in TOU periods. FCM costs are 17 allocated to TOU periods based on the portion of annual system peaks in each TOU 18 period over the 10-year period of 2008–2017. RPS compliance costs are the average 19 cost per kWh costs obtained from Liberty's energy service filing and are applied 20 equally across the TOU. The three portions above (\$/kWh basis) are multiplied by the 21 SCG load to obtain a base revenue. The difference between this base revenue and the 22 total revenue requirement for the SCG default service is assigned to all TOU periods 23 in proportion to their base revenues. 24
- **Transmission**: Total transmission costs are apportioned to TOU periods according to the probability of monthly coincident peak hour in summer and winter. Probabilities are based on the percentage of time over the past 10 years that monthly coincident peak hour has occurred during any particular TOU period.

28

Distribution: A method referred to as 'cost duration method' is used to assign a more 1 2 significant share of costs for peaking assets to the hours that rank highest on the load duration curve. Each hour of the year gets assigned a portion of the distribution costs 3 to reflect usage for peak, intermediate, and baseload capacity. To obtain the \$/kWh 4 5 costs for each TOU period, hourly distribution costs within each TOU period are totaled and divided by the billing determinant (*i.e.*, total MWh of load) associated 6 with that TOU period costs. Costs are apportioned between the two seasons based on 7 the portion of kWh in each seasonal period. Fixed (non-volumetric) customer charges 8 are not modified. 9

10 Table 5 presents the resulting rate design.

	Generation	Transmission	Distribution	Other charges	Total
	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)
Summer					
Peak	\$0.091	\$0.110	\$0.097	\$0.006	\$0.304
Midpeak	\$0.064	\$0.017	\$0.053	\$0.006	\$0.140
Offpeak	\$0.042	\$0.001	\$0.036	\$0.006	\$0.085
Winter					
Peak	\$0.099	\$0.136	\$0.090	\$0.006	\$0.330
Midpeak	\$0.097	\$0.003	\$0.063	\$0.006	\$0.169
Offpeak	\$0.088	\$0.002	\$0.042	\$0.006	\$0.138
	Peak :	Offpeak			
Summer ratio	3.6	:1			

TABLE 5: LIBERTY RESIDENTIAL EV TOU RATE(\$/KWH)

1	1	
T	T	

Winter ratio

12 Note: Other charges include SCRC and SBC. Customer charge is \$11.35 per month.

2.4 :1

13 Source: Docket No. DE 19-064 Liberty TOU Model

14 Q40. What is your assessment of Liberty's residential EV TOU rate design?

A40: I agree with the approach used in the derivation of the energy supply and transmission

16 components of the rate. While I agree with the *premise* of the "cost duration method"

- ¹⁷ used in the derivation of the distribution component of the rate, I find it to be overly
- engineered. Based on the Technical Statement Regarding TOU Model (DE 17-189),

cost duration method was developed "to better link the recovery of distribution system 1 2 costs to the time periods during which system assets are being utilized. In doing so, the resulting rates are intended to accomplish two goals: 1) send a time-differentiated price 3 signal to customers to encourage peak demand reduction, 2) ensure rates for each TOU 4 period reflect the costs of the underlying assets used to meet demand at those times (i.e. 5 cost causation)."36 This idea is also evident in the Technical Statement, "... it is readily 6 apparent that there are a small number of "peak" hours during which system assets 7 necessary to meet demand are used very infrequently. Thus, it would be appropriate to 8 assign a significant share of costs for these peaking assets to the hours that rank highest 9 on the load duration curve."^{37 38} 10

Therefore, the primary purpose of the delivery TOU rate should be to create price signals to reduce the demand on those very infrequently used system assets, and avoid building more assets during those hours. There are alternative approaches to creating these effective price signals without using the complex allocation approach implied by the cost duration method.

16 Q41. Did you develop an alternative approach for the allocation of distribution costs?

A41: Yes, I have. I propose to allocate these costs based on the system load duration curve,
in proportion to the square of the load in each hour. While this proposed allocation
method is not the only approach to assign the distribution costs to time periods, and
there might be other defensible options, I believe that this approach strikes a good
balance between emphasizing high demand hours for allocation and using a more
transparent and simple method.

I have not applied this approach for Liberty's residential EV TOU rate, but as explained below, I have applied it to generate an alternative (to demand charges) rate for highdemand draw commercial charging applications.

³⁶ Technical Statement Regarding TOU Model, DE 17-189, Page 3.

³⁷ Technical Statement Regarding TOU Model, DE 17-189, Page 4.

³⁸ Cost duration method leads to the following allocation of distribution costs: 30% of the costs are allocated to peak hours, 39% allocated to midpeak hours and 31% to offpeak hours.

Q42. Did Liberty develop a marketing plan to effectively target and educate its 1 2 customers with electric vehicles to encourage their uptake of EV TOU rates? A42: No, I am not aware of any formal plans and marketing budget allocated to effectively 3 marketing EV TOU rates to customers. Increased adoption of EV TOU rates will 4 benefit customers in the form of bill savings if they can shift their charging to offpeak 5 periods. It will also benefit Liberty and other customers as the demand during system 6 peak hours are moderated (due to customers shifting their charging load to offpeak 7 periods) and avoid costly expansions. I strongly encourage the Company to develop a 8 targeted marketing plan with the objective of increasing the uptake of the TOU rates 9 among the EV customer population. 10 Q43. Did Liberty propose a plan for exploring EVSE embedded metering capabilities 11 that could mitigate the second meter costs necessary to implement separately 12 metered EV TOU rates? 13 14 A43: No, not at this time. I understand that the Commission has expressed an interest for utilities to further explore EVSE embedded metering capabilities that could potentially 15 increase the adoption of EV TOU rates by mitigating the additional meter costs.³⁹ I 16 encourage the Company to design a pilot/demonstration program to evaluate the 17 technical feasibility of this option. 18 Q44. Please describe your understanding of the rate Liberty is proposing for 19 commercial electric vehicle charging station customers. 20 A44: Liberty has proposed two new rates for two high demand draw classes, EV-L (>200 21 kW) and EV-M (20-200 kW), based on the existing G-1 and G-2 classes. Currently, 22 revenue requirements for G-1 and G-2 classes are recovered mainly from demand 23 charges (~80%), rather than volumetric charges. The proposed rate design shifts the 24 revenue recovery from demand charges to volumetric charges (85%). Note that this 25 rate structure reduces but does not completely eliminate demand charges. 26

³⁹ Order 26, 394, page 13.

The proposed rate includes three components: volumetric, customer, and demand 1 2 charges. To obtain the new rates, the existing total revenue from customer, volumetric and demand charges are summed up, separately for G-1 and G-2. For each class, the 3 total revenue is divided into three rate components based on a specified percentage 4 split, which is 5% customer charge, 85% volumetric charge, and 10% demand charge. 5 The new customer, volumetric, and demand charges are obtained by dividing these 6 values by the billing determinants (number of customers, kWh consumption, kW 7 consumption, respectively) for the relevant rate class. 8

9 Q45. Did Liberty also propose an EV TOU alternative for high demand draw electric
 10 charging stations? If not, please explain why.

A45: No. In its response to DOE 2-5,⁴⁰ Liberty stated that it did not agree that offering EV 11 TOU rates for separately-metered high demand draw commercial applications would 12 be the appropriate rate design for such electric vehicle charging installations. The 13 14 Company argued that the premise of the residential rate was completely different from separately metered commercial customer applications in that while residential 15 customers are likely to charge "when they are home most likely on the weekends and 16 evenings, commercial applications provide charging for any time during the day when 17 drivers are out in the community and need to charge." 18

19 Q46. Do you agree with this reasoning? If not, why.

A46: No. I do not. As I have previously discussed in my testimony, the Company should not 20 second-guess the abilities of its public station owners to pass on some of these efficient 21 price signals to their own customers. When faced with a TOU rate that charges them 22 higher rates during the peak period, the owners of the public chargers are likely to 23 respond with altering their own pricing structures, and passing on these price signals to 24 their own customers. These price signals may motivate customers to use these stations 25 26 during offpeak times, and to the extent that they need to charge during peak times, then they would need to pay for their fair share of using the system when the demand on the 27

⁴⁰ Attachment SIS-7 (Liberty Response to DOE 2-5).

system is high. If they do not pay for these costs, then it would imply that other
 customers would need to pay for their convenience of charging. The Company's
 responsibility is to offer the EV TOU rate that is more aligned with cost-causality and
 marginal-cost-based ratemaking principles and observe how market participants
 innovate in response to these rates.

Q47. Did you design an EV TOU rate as an alternative to Liberty's G-1 and G-2 rates that are the rates currently available to high-demand draw customers?

A47: Yes, I have. I designed an illustrative EV TOU rate for the Rate G-1 and G-2 classes, 8 using data available from Liberty's workpapers submitted in DE 20-170 as well as 9 10 responses to data requests. While this rate is designed largely based on the most recent publicly-available Liberty data, this rate design should be viewed only as illustrative at 11 this time. There are several reasons for this: 1) while we made an effort to use the most 12 recent data in our rate design, it may very well be that Liberty may have more recent 13 14 data for various parts of our rate design analysis; and 2) where we did not have some of 15 the required data, we made reasonable assumptions about the allocation of revenues across seasons. 16

Regardless, our rate design approach remains valid and can constitute a starting point for the Company to update with more complete data.

19 Q48. Please describe the EV TOU rate you have designed.

A48: I have designed a three-period, seasonal EV TOU rate that is revenue neutral to the 20 summation of Rates G-1 and G-2 class revenue requirements. This rate eliminates the 21 22 demand charge and allocates the revenues that would have been collected by the demand charge to the distribution component of the TOU rate. I maintained the 23 customer charge at \$428.76 /month for G-1 and \$71.47 \$/month for G-2, using the 24 charges presented in Attachment SIS-8 (Liberty Response to Staff 1-6 Attachment 25 Staff 1-6) for EV-L and EV-M. I adopted the peak, midpeak, and offpeak definitions 26 used by the Company. As presented in Table 6, this rate results in a peak to offpeak 27 ratio of 5.1:1 in the summer and 3.8:1 in the winter after time-varying and other 28 volumetric charges are considered. 29

	Generation (\$/kWh)	Transmission (\$/kWh)	Distribution (\$/kWh)	charges (\$/kWh)	Total (\$/kWh)
Summer					
Peak	\$0.247	\$0.144	\$0.037	\$0.006	\$0.433
Midpeak	\$0.061	\$0.018	\$0.033	\$0.006	\$0.118
Offpeak	\$0.048	\$0.000	\$0.028	\$0.006	\$0.082
Winter					
Peak	\$0.074	\$0.166	\$0.035	\$0.006	\$0.281
Midpeak	\$0.060	\$0.004	\$0.030	\$0.006	\$0.099
Offpeak	\$0.058	\$0.003	\$0.028	\$0.006	\$0.095
	Peak	:Offpeak			
Summer ratio	5.3	:1			
Winter ratio	3.0	:1			

TABLE 6: ENERGY'S ILLUSTRATIVE HIGH-DEMAND DRAW EV TOU RATE FORLIBERTY (\$/KWH)

1 2

Note: The customer charge is \$428.76/month for G-1 and \$71.47/month for G-2.

Q49. Please explain how you designed the energy supply component of the EV TOU rate.

A49: I first calculated the annual energy supply revenue requirements for Rates G-1 and G-2. 5 This was obtained by multiplying the summation of the G-1 and G-2 annual load⁴¹ by 6 the average estimated medium and large C&I energy service price provided by the 7 Company.⁴² I allocated 20% of this revenue to FCM and the remaining 80% to non-8 FCM costs.⁴³ FCM costs were allocated only to the peak periods in the summer. The 9 10 FCM-related rate was obtained by dividing the FCM costs by the load in the summer peak periods. I allocated the non-FCM revenue requirement to the winter and summer 11 months defined by the Company in proportion to the marginal costs of generation in 12 winter and summer. 13

⁴¹ Attachment SIS-8 (Liberty Response to Staff 1-6 Attachment Staff 1-6)

⁴² Energy service prices were obtained from Attachment SIS-9 (Liberty Response to Energy 4-4 Attachment 4-4.1) and Attachment SIS-10 (Liberty Response to Energy 4-4 Attachment 4-4.2).

⁴³ FCM constitutes approximately 20% of the annual value of wholesale electricity markets. Eric Johnson, Overview of Wholesale Electricity Markets: New England Energy Vision Wholesale Markets Design Technical Forum, ISO New England, January 13, 2021, page 16. https://www.iso-ne.com/staticassets/documents/2021/01/isone_overview_and_regional_update_wholesale_markets_2020_1_13_final.pdf
After obtaining the revenue requirements for winter and summer, I allocated it to TOU periods within each season. First, I calculated a marginal rate for each TOU period by dividing the total marginal costs across each TOU period by the total load in that same period. Next, I calculated an average marginal rate by dividing the total marginal costs in the season by the total seasonal load. I applied the ratios between these marginal rates by period and average marginal rate to the average rate implied by the revenue requirement to derive the energy supply component of the TOU rate.

8 Q50. Please explain how you designed the transmission component of the EV TOU rate.

A50: I obtained the annual transmission revenue requirements for the G-1 and G-2 classes
 from the allocated transmission expenses reported in the transmission charges work
 papers provided by the Company.⁴⁴ I allocated the summation of the G-1 and G-2
 transmission revenue requirement to the winter and summer months based on the
 seasonal proportions of the transmission revenue.⁴⁵

After obtaining the seasonal transmission revenue requirement, I allocated it to TOU

15 periods based on the probability of ISO-NE monthly peak hours occurring in each TOU

period. These probabilities were calculated based on the frequency of ISO-NE monthly
 peak hour occurrence during each TOU period from 2010 to 2020.

Next I calculated the TOU rates by dividing the revenue allocated to each TOU period
by the total load in that period.

⁴⁴ Transmission expenses were obtained from Attachment SIS-11 Liberty Response to Energy Attachment Energy 4-4.4.

⁴⁵ Transmission expenses were allocated to seasons using monthly transmission revenue data in Attachment SIS-12 Liberty Response to Energy 4-5 Attachment 4-5.

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Page 36 of **49**

1 Q51. Please explain how you designed the distribution component of the EV TOU rate.

A51: I obtained the annual distribution revenue requirements for G-1 and G-2 from
 Attachment SIS-8.⁴⁶ I summed up the revenue requirements for G-1 and G-2 and

4 removed the portion that is recovered through customer charges.

5 To allocate the annual revenue requirement to TOU periods within winter vs summer months, I performed the following calculations. Starting with the hourly system load 6 profile, I took the square of the load in each hour and then summed up the squared 7 loads for all 8760 hours. The system load profile was obtained from Liberty's 8 residential TOU model.⁴⁷ I calculated each hour's percentage allocation based on its 9 squared load. I applied this allocation to the annual distribution revenue requirement 10 and summed up the allocated costs by season and period. Next, I divided the revenue 11 allocated to each TOU period by the summation of G-1 and G-2 load in that period to 12 obtain the distribution component of the TOU rates. 13

Q52. In your opinion, is this proposed EV TOU rate a more economically efficient and equitable rate compared to Liberty's demand charge alternative?

A52: Yes, I do. EV TOU rates more accurately reflect the marginal cost of providing service 16 to the customers. Customers are expected to consume electricity up to the point their 17 marginal benefit is equal to the marginal cost of electricity. When they respond to these 18 price signals and moderate their usage, then future utility investments in additional 19 peak capacity can also be moderated. To the extent that the customers do not respond 20 to price signals and continue to demand electricity during most expensive times for the 21 grid, then they end up paying for the demand they impose on the system. This implies 22 that this rate is also more equitable, collecting the higher charges from customers who 23 impose a higher demand on the system. Moreover, EV TOU rates for high demand 24 draw EV charging applications send more economically efficient price signals such 25 that owners of these charging stations can similarly pass on these costs to their 26

⁴⁶ Attachment SIS-8 (Liberty Response to Staff 1-6 Attachment Staff 1-6)

⁴⁷ Hourly load profile for the system was obtained from Docket No. DE 19-064 Liberty TOU Model.

Assessment of Unitil Residential EV TOU Rates and VI. 3 High Draw EV TOU Rates

Q53. What is the scope of your review for Unitil rate design? 5

4

- A53: I will review and critique Unitil's separately metered residential EV TOU rate design 6 and high-draw alternative EV rate.⁴⁸ 7
- O54. Are Unitil EV TOU rate designs consistent with the rate design principles 8 discussed at the beginning of Mr. Taylor's testimony? 9

A54: To some extent. Unitil has applied the cost-reflectivity principle in the design of the 10 generation and transmission rates, while it has not done the same for the distribution 11 component of the rate, which represent roughly 30% of the residential class revenue 12 requirement. 13

Q55. Please describe your understanding of how Unitil developed their residential EV 14 TOU rates. 15

- A55: Unitil proposes a residential EV TOU rate (TOU-EV-D) with two seasons and three 16 TOU periods. Peak period is 3 p.m.–8 p.m. on non-holiday weekdays, midpeak period 17 is 6 a.m.–3 p.m. on non-holiday weekdays. All other times are designated as offpeak. 18 The proposed rate includes a customer charge of \$5.26 per month. The volumetric 19 TOU rates for different service components are calculated as the following: 20 Generation: Generation cost includes an RPS and a non-RPS component. Non-RPS 21 costs are obtained by assigning the power supply costs that are incurred by the 22
- residential class to each TOU period based on the ratios of marginal costs across TOU 23

⁴⁸ Unitil filed other electric vehicle related proposals in Docket No. DE 20-170 and Docket No. DE 21-030, which Unitil asserts will be addressed in Docket No. DE 21-030 rather than this proceeding. See, Attachment SIS-13 (Unitil Response Staff 1-008(b)).

periods. After these ratios are obtained, non-RPS rate for each TOU period is
calculated by multiplying each season's average power supply charges by the ratios
obtained above. RPS charges are allocated equally to all TOU periods.
• Transmission: Total transmission costs for each season are allocated to TOU periods
based on the probability of ISO-NE peak occurring in each period. The probabilities
are calculated based on how many times the ISO-NE monthly peak hour occurred
during each TOU period from 2000–2020.49 For each TOU period, the allocated cost
is divided by the kWh deliveries to obtain the rate. A reconciliation amount is added
equally to all periods to obtain the final rate. This calculation is performed separately
for winter and summer.
• Distribution : Offpeak rate is set at a fixed value of 0.02941 \$/kWh. This value
results from an Excel goal-seek function that aims to achieve a 3:1 ratio for peak
rate/offpeak rate. This calculation is performed separately for winter and summer.
Q56. Did Unitil allocate distribution costs using a method based on cost-causation?
A56: No, it did not. Mr. Taylor argues that "the costs associated with the distribution system
are fixed in nature. These costs do not vary by time of day and as such have no bearing
on developing a TOU rate that is purely cost causative." ⁵⁰ He indicates that he did not
rely on a method that relies on cost-causation principles, because " If the TOU rates
encourage customers to use the system assets during a different time periods, there is
no reduction in the system assets required to meet the peak demands of those
customers; these assets will simply be utilized during a different hour."
O57. Do you agree with Unitil's reasoning for this choice?

A57: No, I do not. While the costs of the distribution system are largely fixed in the short term, all costs are variable in the long term. Even though the distribution costs do not vary on an hourly basis as do the generation and transmission costs, the timing and

⁴⁹ Docket No. DE 21-030, Exhibit JDT-1, Page 17 indicates that the historical data from the "most recent ten years" were used for this analysis; however, the TOU model workbook (DE 20-170 Staff 1-6 Attachment 7.xlsx) uses the twenty year period of 2000–2020.

⁵⁰ Docket No. DE 21-030, Exhibit JDT-1, Pages 17-18.

intensity of the distribution system use have implications for the future investment
decisions. More specifically, since substations see more demand during peak periods,
this may drive the future need for more investment. Even the local facilities may need
upgrades if customers demand grows rapidly beyond the original design parameters.
On the other hand, the same assets see a much lower demand during offpeak periods.
This implies that the time-differentiated pricing of the distribution costs is justified to
ensure more efficient use and expansion of the distribution system.

While Mr. Taylor acknowledges that the shifting of peak demand to offpeak periods 8 9 reduces some distribution costs over time, he understates the importance of addressing this in the rate design by indicating that "load shifting may have some impact on the 10 level of investment but it would be marginal given these costs would only represent a 11 small portion of total system costs and would not impact the utilities cost structure in 12 the next four years and would be extremely difficult to estimate."⁵¹ Given the 13 increasing trends towards electrification nationally and the very premise that this 14 Commission has instructed utilities to design EV TOU rates to create efficient price 15 signals for EV charging, I find Mr. Taylor's reasoning unsupported. 16

Q58. Did Unitil provide any supporting analysis demonstrating how the residential EV
 TOU rate season and time period definitions were determined?

A58: No, it did not. Summer is defined as May–October and winter is defined as November–
 April. Mr. Taylor presents four options for the time period definitions, however does
 not provide evidence to show that at least one of these options has a strong correlation
 with system load and marginal cost characteristics. These load shape and marginal cost
 clustering analyses are an important part of the rate design analysis and should have the
 same rigor as the analyses that involve allocation of costs to time periods.

⁵¹ Docket No. DE 21-030, Exhibit JDT-1, Pages 19-20.

Q59. What is the proposed customer charge for the residential EV TOU rate?

A59: Unitil's residential EV TOU rate has a proposed customer charge of \$5.26 per month.
 This charge is incremental to the customer charge they will be paying for their whole
 house service. My understanding is that this incremental rate reflects only the carrying
 cost associated with the separate meter, but does not include the incremental local
 facilities costs that may be created by the increased demand due to the charging of the
 EVs.

8

Q60. What is your assessment of Unitil's proposed residential EV TOU rate?

A60: Unitil's rate design is generally consistent with the guidance issued by the Commission
 on the ideal attributes of the EV TOU rates. It is seasonal, has three periods, and has a
 peak period of five hours with a peak to offpeak ratio of 3:1. However, there are still
 areas for improvement in the design of this rate:

- The Company should derive the distribution cost component of this rate in a way that assigns the costs of the system assets to those hours driving the need for those assets.
- The Company should evaluate whether it will incur additional costs resulting from customers' charging their EVs at home, in addition to the incremental costs associated with the meters.
- The Company should undertake an analysis of the system load profiles and
 marginal energy price profiles to prove that its season and time period definitions
 indeed reflect the system demand conditions. These definitions should be updated
 periodically as the system conditions evolve.

Q61. Has Unitil proposed to develop a marketing plan to effectively target and educate its customers with electric vehicles to encourage their uptake of EV TOU rates?

A61: Yes. Unitil has proposed to develop "a comprehensive, multi-channel marketing,
 communications and education plan that is designed to meaningfully increase
 consumer awareness, interest in and adoption of EVs, EV charging infrastructure and

40

1	EV TOU rates during the initial five years of the EV Program."52 While the primary
2	focus of this proposed plan is to increase adoption of electric vehicles through
3	customer education and communication, it also covers efforts related to "new EV/TOU
4	rates to encourage customer savings and electric system demand benefit from off-peak
5	charging."53 I applaud the Company for proposing this comprehensive marketing
6	approach as often times the new rates and new programs as beneficial as they could be,
7	may go unnoticed in the absence of targeted marketing and education campaigns.
8	Q62. Did Unitil propose a plan for exploring electric vehicle supply equipment (EVSE)
9	embedded metering capabilities that could mitigate the second meter costs
10	necessary to implement separately metered EV TOU rates?
11	A62: Yes. The Company has proposed a residential behind-the-meter EVSE installation and
12	incentive program.54 This program will allow the Company to test managed charging
13	capabilities along with an opportunity to assess EVSE embedded metering capabilities.
14	Q63. Please describe your understanding of how Unitil developed their high-demand
15	draw EV TOU rates.
16	A63: Unitil has proposed a high-demand draw EV TOU rate with two seasons and three
17	TOU periods. Peak period is 3 p.m8 p.m. on non-holiday weekdays, midpeak period
18	is 6 a.m3 p.m. on non-holiday weekdays. All other times are designated as offpeak.
19	High draw EV TOU rates are proposed for two classes: TOU-EV-G2 small general
20	service for less than 200 kVA usage ⁵⁵ and TOU-EV-G1 for large general service larger
21	than 200 kVA.

⁵² Direct Testimony of Carroll, Simpson, Valianti, Exhibit CSV-1, page 44-45.

⁵³ Direct Testimony of Carroll, Simpson, Valianti, Exhibit CSV-1, page 44.

⁵⁴ Direct Testimony of Carroll, Simpson, Valianti, Exhibit CSV-1, pages 28-29.

⁵⁵ Unitil has two types of G-2 customers. Unitil offers the TOU-EV-G2 rate only to G2 customers with demand charges.

1	The proposed rate includes a customer charge of \$32.20 for G2, \$178.93 for G1
2	secondary, and \$95.42 for G1 primary service. The proposed rate has time-varying
3	volumetric charges for generation and transmission and a demand charge for distribution:
4	• Generation: For G1, energy supply is not included in the rate structure as generation
5	is provided through competitive suppliers. For G2, default service costs are used in a
6	similar manner to allocate the power supply costs associated with the class to TOU
7	periods as described for the Residential rates above.
8	• Transmission : The same procedure described for the Residential rate applies here.
9	• Distribution : The proposed demand charges are 11.59 \$/kW for G2 (compared to the
10	existing G2 demand charge of 10.51 \$/kW), and 8.37 \$/kVA for G1 (compared to the
11	existing G1 demand charge of 7.60 \$/kVA). However, Unitil proposes a demand
12	charge holiday that will provide a 75% discount for the demand charges during
13	customer's first year of enrollment in the rate, a 50% discount during the second year,
14	and a 25% discount during the third year.
15	Q64. What is the basis for Unitil's decision to offer demand charge holidays for new EV
16	charging facilities?
17	A64: Mr. Taylor has reviewed a few other utilities' offerings to address the challenges
18	associated with demand charges and low utilization charging infrastructure in his
19	testimony. His review however has mostly emphasized utilities that offer demand
20	charge holidays. Unitil's premise is that demand charge holidays will help charging
21	infrastructure owners "weather early costs from demand charges and low utilization."56
22	However, Unitil does not discuss the implications of these unrecovered demand
23	charges for other customers and how other customers will have to pay for these
24	charges.

⁵⁶ Docket No. DE 21-030, Exhibit JDT-1 Page 30 of 38.

Mr. Taylor acknowledges the availability of a number of technologies to charging station owners that limit peak demand: "These technologies utilize set thresholds, algorithms, and machine learning to control the peak demand of the charging stations by controlling individual charging ports."⁵⁷ He does not discuss, however, why charging station owners would invest in these technologies in the absence of cost-based price signals.

6

7

Q65. What is your overall assessment of Unitil's demand charge alternative proposal for high-demand draw charging applications?

A65: While Unitil's proposed EV TOU rate for high-demand draw charging applications has 8 successfully incorporated time-varying rates for generation and transmission elements 9 of the rate, these efficient price signals would be muted by the demand charge holiday 10 applied to the distribution component of the rate. This effectively boils down to 11 cancelling the load shifting incentives provided by the generation and transmission 12 TOU prices. Moreover, by extending the demand charge holiday to high-demand draw 13 charging applications, Unitil's rate proposal would subsidize owners of the charging 14 applications at the expense of other customers. I recommend that Unitil design an EV 15 TOU rate as an alternative to demand charges, using the approach utilized in the design 16 of Energy's illustrative EV TOU rate for Unitil. 17

Q66. Did you design an EV TOU rate as an alternative to Unitil's EV TOU rates developed for G1 and G2that are the rates available to high-demand draw customers?

A66: Yes, I have. I designed an illustrative EV TOU distribution rate for the G1 class as an alternative to demand charges, using data available from Unitil's workpapers in DE 20-170 and DE 21-030 as well as publicly-available data. ⁵⁸ While this rate is designed largely based on the most recent publicly-available Unitil data, it should be viewed as illustrative at this time. While we made an effort to use the most recent data in our rate design, it may very well be that Unitil may have more recent data for various parts of

⁵⁷ Docket No. DE 21-030, Exhibit JDT-1 Page 33 of 38.

⁵⁸ Unitil's distribution revenue requirement was excerpted from its proposed revenue requirement in the ongoing rate case, but will need to be updated to reflect the ultimate resolution of Unitil's rate request.

1	our rate design analysis. Since Unitil has already developed TOU rates for the
2	transmission component, I adopted Unitil's approach for transmission rates; however, I
3	allocated the transmission revenue requirements to TOU periods based on the ISO-NE
4	monthly peaks in the 2010–2020 period rather than the twenty-year period (2000–
5	2020) used by Unitil. For the generation component, Unitil did not develop a time-
6	varying rate since G1 customers are receiving energy supply from retailers. For this
7	reason, I also did not develop a time-varying generation rate.

8 Q67. Please describe the illustrative EV TOU distribution rate you have designed.

A67: I have designed a three-period, seasonal EV TOU distribution rate by adopting the 9 season and TOU period definitions provided by the Company. This rate is revenue 10 neutral to the portion of the G1 distribution revenue requirement after customer charges 11 are subtracted. This rate eliminates the demand charge and recovers the revenue 12 requirement through time-varying volumetric rates. I used an illustrative customer 13 charge at \$137.18 per month for G1, which is the average of the customer charges for 14 the primary and secondary voltage G1 customers. I adopted the peak, midpeak, and 15 offpeak definitions used by the Company. As presented in Table 7, this distribution rate 16 results in a peak to offpeak ratio of 6.5:1 in the summer and 6.4:1 in the winter after 17 time-varying and other volumetric charges are considered. 18

	Generation	Transmission	Distribution	Other charges	Т
	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/k\
Summer					
Peak	N/A	\$0.178	\$0.032	\$0.008	\$0.
Midpeak	N/A	\$0.021	\$0.024	\$0.008	\$0.
Offpeak	N/A	\$0.004	\$0.022	\$0.008	\$0.
Winter					
Peak	N/A	\$0.188	\$0.027	\$0.008	\$0.
Midpeak	N/A	\$0.007	\$0.022	\$0.008	\$0.
Offpeak	N/A	\$0.006	\$0.021	\$0.008	\$0.
	Peak	:Offpeak			
Summer ratio	6.5	:1			
Winter ratio	6.4	:1			

TABLE 7: ENERGY'S ILLUSTRATIVE HIGH-DEMAND DRAW EV TOU RATE FOR UNITIL (\$/KWH)

4
5

3

1 2

6 7

137.18 \$/month, which is the average of the customer charges for the primary and secondary voltage G1 customers.

8 Q68. Please explain how you designed the distribution component of the EV TOU rate.

A68: I first obtained the annual distribution revenue requirements for G1 and removed the 9

portion that is recovered through customer charges.⁵⁹ 10

To allocate the annual revenue requirement to TOU periods within winter vs summer 11

months, I performed the following calculations. Starting with Unitil's hourly system 12

load profile, I took the square of the load in each hour and then summed up the squared 13

loads for all 8760 hours. I obtained Unitil's hourly system load profile by summing the 14

⁵⁹ I obtained the G1 distribution revenue requirement by subtracting the revenue recovered through customer charges from the total distribution revenue requirement for G1 reported in DE 21-030. Testimony of Ronald J. Amen. Attachment RJA-5, Page 3-3. Bates Page 1367. Available at: https://www.puc.nh.gov/Regulatory/Docketbk/2021/21-030/INITIAL%20FILING%20-%20PETITION/21-030 2021-04-02 UES ATT TESTIMONY AMEN.PDF

class load profiles for Unitil's four rate classes⁶⁰ multiplied by the customer counts in
 each class.⁶¹ I calculated each hour's percentage allocation based on its squared load. I
 applied this allocation to the annual distribution revenue requirement and summed up
 the allocated costs by season and period. Next, I divided the revenue allocated to each
 TOU period by the total G1 load in that period to obtain the distribution component of
 the TOU rates.

Q69. Why is your illustrative EV TOU rate more preferable compared to Unitil's proposed rate with demand charges?

A69: The illustrative EV TOU rate allocates distribution costs to different hours based on the
demand imposed on the system during those hours. Cost-reflective price signals
created by this approach are expected to incentivize customers to shift their load to
lower cost hours and mitigate the peak growth. This rate is also more equitable and
does not lead to cross subsidies as would be the case under Unitil's proposed demand
charge holiday.

¹⁵ VII. Findings and Recommendations

16 **Q70.** Please summarize your findings and recommendations related to the design of the

EV TOU rates.

17

- 18 A70: My key findings and recommendations are as follows:
- I recommend that all three utilities propose an EV TOU alternative to current demand
 charge based rates for high demand draw commercial customer applications. In the
 absence of demand charges, the TOU rate is more consistent with the marginal cost
 principles, while minimizing cross subsidies.

⁶⁰ Unitil's class average load profiles were obtained from the Company website. https://unitil.com/sites/default/files/excel/UESPROFILES20.xlsx

⁶¹ Customer counts were obtained from DE 21-030. Testimony of Ronald J. Amen. Attachment RJA-5, Page 2-3. Bates Page 1366. Available at: <u>https://www.puc.nh.gov/Regulatory/Docketbk/2021/21-030/INITIAL%20FILING%20-%20PETITION/21-030_2021-04-02_UES_ATT_TESTIMONY_AMEN.PDF</u>

Utilities' arguments for commercial EV charging applications not being ideal for 1 2 TOU rates are not warranted. Unless utilities design rates reflecting efficient marginal cost-based price signals, market participants will not respond with innovation. 3 The State of NH does not have an official transportation electrification public-policy 4 goal, therefore there is no public-policy basis for extending cross-subsidies for 5 commercial charging applications at this time. 6 Given that Eversource is not able to implement a three period EV TOU rate for its 7 residential customers at this time, the two-period domestic TOU rate will be the 8 transitional rate for these customers. A seasonally differentiated two-period rate with 9 a shorter peak window that reflects the marginal facility costs and a lower customer 10 11 charge will provide stronger price signals and is more likely to be attractive to customers both with and without EVs. 12 Eversource's proposed high draw demand alternative rate to demand charges is 13 14 revenue neutral at the 10% station utilization level for which it was designed. While this rate is designed to recover at least a portion of demand related revenues in the 15 form of volumetric charges, it will still lead to cross-subsidies. Moreover, this rate 16 does not provide marginal cost based price signals for a more efficient use of the 17 18 system assets. I recommend that the Company designs an EV TOU rate as an alternative to demand charges, using the approach utilized in the design of Energy's 19 illustrative EV TOU rate for Eversource. 20 Liberty has not proposed a new residential EV TOU at this time as it offers a three-21 22 period seasonal rate initially offered for battery storage customers. This rate will also be available to separately metered EV TOU customers. I recommend that Liberty 23 revisits this rate design periodically to ensure that the time periods are still reflective 24 of system demand conditions and lead to efficient charging behavior. 25 Liberty's proposed high-draw demand alternative to demand charges is a revenue 26 ٠ neutral volumetric rate that reduces most of the charges collected from demand 27 charges, but not all. This rate, however, does not provide price signals that will 28 incentivize a more efficient use of the system assets. I recommend that the Company 29

designs an EV TOU rate as an alternative to demand charges, using the approach 1 2 utilized in the design of Energy's illustrative EV TOU rate for Liberty. • While Unitil's rate design is generally consistent with the guidance issued by the 3 Commission on the ideal attributes of the EV TOU rates, the distribution component 4 of the rate is "imposed" to achieve a 3:1 peak to offpeak ratio. The Company should 5 derive the distribution cost component of this rate in a way that assigns the costs of 6 the system assets to those hours driving the need for those assets. The Company 7 should undertake an analysis of the system load profiles and marginal energy price 8 profiles to prove that its season and time period definitions indeed reflect the system 9 10 demand conditions. The Company should also evaluate whether it will incur additional costs resulting from customers' charging their EVs at home, in addition to 11 the incremental costs associated with the meters. 12 13 • Unitil has proposed an EV TOU rate for high-demand draw applications that introduces time varying rates for the generation and transmission components of this 14 rate. However, Unitil's proposed rate still maintains the original demand charge 15 component and instead proposes a three-year demand charge holiday. These cross 16 subsidies for the commercial charging facilities are not warranted given that increased 17 18 transportation electrification is not an official public-policy goal in New Hampshire. I recommend that the Company designs an EV TOU rate as an alternative to demand 19 charges, using the approach utilized in the design of Energy's illustrative EV TOU 20 21 rate for Unitil.

Q71. Please provide your recommendations related to the implementation of EV TOU rates

A71: I have several recommendations related to the implementation of EV TOU rates. First,
the Commission should direct each utility to offer a customer-contributed meter option.
The additional meter required to offer separately metered EV TOU rates has the
potential to increase a customer's monthly charge, particularly for residential
customers, in a manner which would unnecessarily dissuade them from embracing the
time of use rate. Providing a customer contributed meter option would ensure costs
associated with the additional meter are not shifted to other customers and would allow

EV TOU customers to more quickly recoup the cost associated with the meter via
potential bill savings. Second, the Commission should direct both Liberty and
Eversource to develop a plan to market their time of use rate proposals; neither Liberty
nor Eversource quantified costs associated with such a plan, in spite of having
previously been directed to do so by the Commission. Third, the Commission should
direct both Eversource and Liberty to develop a pilot similar to Unitil's proposal to test
the feasibility of using EVSE's embedded metering technologies. Fourth, the
Commission should require annual reports from the utilities regarding customer
enrollment, customer charging profiles, and the status of the above-described
alternative metering assessment pilots.

- 11 Q72. Does this conclude your testimony?
- 12 A72: Yes.
- 13

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-1 Page 1 of 22

Attachment SIS-1

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-1 Page 2 of 22

Sanem Sergici PRINCIPAL

Boston, MA +1.617.864.7900 Sanem.Sergici@brattle.	com
---	-----

Dr. Sanem Sergici is a Principal in The Brattle Group's Boston, MA office specializing in innovative retail rate design and economic analysis of distributed energy resources (DERs). She regularly assists her clients in matters related to electrification, grid modernization investments, emerging utility business models and alternative ratemaking mechanisms.

Dr. Sergici has been at the forefront of the design and impact analysis of innovative retail pricing, enabling technology, and behavior-based energy efficiency pilots and programs across North America. She led numerous studies in these areas that were instrumental in regulatory approvals of grid modernization investments and smart rate offerings for electricity customers. She also has significant expertise in resource planning, development of load forecasting models and energy litigation.

Dr. Sergici regularly publishes in academic and industry journals and presents at industry events. She was recently featured in Public Utility Fortnightly Magazine's "<u>Fortnightly Under</u> <u>40 2019</u>" list. She received her PhD in Applied Economics from Northeastern University in the fields of applied econometrics and industrial organization. She received her MA in Economics from Northeastern University, and BS in Economics from Middle East Technical University (METU), Ankara, Turkey.

AREAS OF EXPERTISE

- Innivative Retail Electricity Pricing
- Grid Modernization
- Electrification
- Distributed Energy Resources
- Resource Planning

EXPERT TESTIMONY AND REGULATORY FILINGS

Testimony before the Nova Scotia Utility and Review Board in the Matter of The Public Utilities Act, R. S. N. S. 1989, c380, as amended and Application by Nova Scotia Power Incorporated for Approval of Time-Varying Pricing Tariff Application - M09777, May 17, 2021.

Filed rebuttal evidence before the Nova Scotia Utility and Review Board in the Matter of The Public Utilities Act, R. S. N. S. 1989, c380, as amended and Time-Varying Pricing Tariff Application - M09777, April 22, 2021.

Filed direct evidence before the Nova Scotia Utility and Review Board in the Matter of The Public Utilities Act, R. S. N. S. 1989, c380, as amended and Time-Varying Pricing Tariff Application - M09777, November 30, 2020.

Testimony before the State of New Hampshire Public Utilities Commission, Docket No. DE 19-057, Distribution Service Rate Case, on behalf of the Staff of the New Hampshire Public Utility Commission on rate design studies, December 20, 2019.

Testimony before the State of New Hampshire Public Utilities Commission, Docket No. DE 19-064, Distribution Service Rate Case, on behalf of the Staff of the New Hampshire Public Utility Commission on rate design studies, December 6, 2019.

SELECTED CONSULTING EXPERIENCE

UTILITY REGULATORY AND BUSINESS MODELS

- Assisted the New York Department of Public Service to develop a comprehensive financial model of a representative (downstate) New York utility capable of demonstrating the impacts of REV initiatives upon utility financial performance. Our modeling effort included developing plausible incentive regulation frameworks, new incentive mechanisms, and potential platform frameworks, services and futures.
- Development of Performance Incentive Metrics for the Joint Utilities of New York. The Brattle Group worked with the New York PSC Staff and, subsequently, with the State's six investor owned electric utilities (Joint Utilities) in analyzing the feasibility and impacts associated with proposed earnings sharing mechanisms (EAMs), primarily the EAMs associated with load factor and system efficiency.

- Assisted a North American Utility with development of a short-term and long-term regulatory strategy to enable their 2030 Vision. Brattle team interviewed the executive team; identified consensus views and disagreements on alternative business models and regulatory models. Developed straw proposals for two potential regulatory models one focused on enabling shorter-term outcomes, and the other focused on enabling Company's longer-term vision.
- Assisted Pepco D.C. as they develop a multi-year rate plan and various traditional and emerging
 performance incentive metrics to be filed in their upcoming rate case. Brattle team developed
 and facilitated workshops to introduce Pepco's MYRP proposal to the stakeholders and assisted
 Pepco with incorporating stakeholder input to the final proposal.
- Assisted a Canadian Utility with a critical assessment of their custom incentive ratemaking
 model and discussed how it compares with other forms of PBR. We presented a jurisdictional
 scan of the PBR implementations across North America and Europe, and assessed pros and cons
 of each approach. We also advised them on currently proposed "Distributed Utility Models" and
 assess pros and cons of each model; reviewed "Alternative Regulatory Models" that were
 developed to ensure that utilities can coexist with the DERs and continue to maintain healthy
 balance sheets.
- For a Canadian electric utility, reviewed and summarized alternative regulatory frameworks and incentive models that would support a sustainable energy efficiency business. Investigated the pros and cons of these models, identified the implications of each model for the utility, and made a recommendation based on our findings. Utility will discuss the recommended approach with the regulator and seek an approval.
- For a large Canadian electric utility, assisted with the development of an alternative proposal to their current performance based regulation (PBR) framework. Examined and benchmarked several examples of performance based regulation schemes in place for other utilities, and advised on an enhanced PBR mechanism.

INNOVATIVE RATE DESIGN AND IMPACT EVALUATION STUDIES

- Assisted with rate design proposal. Brattle has been retained by Nova Scotia power to assist with a comprehensive evaluation of innovative rate designs and development of Company's rate design proposal including load and bill impact analyses. Brattle team participated in stakeholder sessions to socialize the rate design with the stakeholders.
- Review of Rate Design Studies on Behalf of the Staff of the New Hampshire Public Utilities Commission. Brattle reviewed the rate design studies presented by Liberty Utilities and Eversource and filed testimony on behalf of the Staff. Both studies focused on the distribution services offered by the utilities and examined and testified on issues involving embedded and marginal cost based rate design. Dr. Sergici filed direct testimony in the proceeding.

- Design, measurement and verification of Maryland Joint Utilities' PC44 TOU pilot. Brattle serves
 as the technical lead on behalf of the Maryland Joint Utilities, and led the pilot design and M&V
 methodology work streams in the PC44 workgroup process. Brattle will evaluate results from
 these three pilots in 2020.
- Assisted a New Zealand distribution utility with development of a peak time rebate pilot. Advised the client in pilot design principles and calculated sample sizes to yield statistically significant results. Undertook empirical testing of more than 150 different baseline methods using the client data and recommended an approach that leads to the highest accuracy and lowest bias in predicting the event day usage.
- Developed a model for the Ontario Energy Board to estimate a counterfactual hourly customer demand profile for multiple innovative pricing profiles of interest. Evaluated the economic efficiency of each alternative pricing option, taking into account system cost drivers including energy, ancillary services, generation capacity, and transmission and distribution capacity, as well as overall changes to consumer welfare driven by induced changes in demand. This represents one of few efforts to fully quantify the societal costs and benefits of innovative rate structures and involved close collaboration with the OEB team to ensure the Ontario-specific market structures were accurately reflected in our analysis.
- Technical Advisor to OEB on the New RPP Pilots. A Brattle team led by Dr. Sergici has developed a Technical Manual to guide the design and impact evaluation of new RPP pilots. Dr. Sergici has been closely working with the OEB RPP team as they oversee the implementation of these pilots in accordance with the guidelines
- Undertook impact Evaluation of Ontario's Time-of-Use Rates on Behalf of Ontario Power Authority. A Brattle team led by Dr. Sergici provided an impact evaluation of Ontario's province-wide roll-out of Time-of-Use (TOU) rates for its residential and general service customers on behalf of Ontario Power Authority. Brattle acquired hourly load data from the IESO and the LDCs, aggregated it for the pricing periods that correspond to the TOU rate, reinterpreted the full-scale deployment as a natural experiment, and analyzed it using econometric methods for three consecutive years.
- Undertook a retail rate benchmarking study for a large southwestern utility. Our team, led by Dr. Sergici, reviewed utility resource plans to estimate each utility's retail rate trajectory. We compared the utilities across a variety of rate drivers, such as reserve margin, fuel mix, load growth, load factor, renewables investment requirements, and demand-side activities, and provided strategic recommendations for addressing these drivers of future rate growth.
- Undertook an extensive review of the rate designs and methodologies used by other jurisdictions/countries for a large Canadian Utility. We reviewed the rates that are currently offered by a large Canadian utility and compared them with best industry practices from around

the globe. As a result of our analysis, we identify some near term and long term alternative rate design options for our client, which can help them to manage revenue risks and volatility due to the effects of disruptive threats, and at the same time to increase innovation and affordability in the rate options presented to the customers.

- Assisted Pepco Holdings, Inc. to evaluate the effectiveness of the AMI-enabled energy managements tools (EMTs) in reducing per capita energy use. Led a team of four researchers to compile and process data for four of the PHI jurisdictions; identify relevant control groups and methodology for impact evaluation and undertake an econometric analysis to quantify the EMT impact.
- Assisted an industry-leading provider of integrated demand response, energy efficiency, and customer engagement solutions in the design of and M&V plan for a behavioral demand response program. The plan included a detailed section on sampling selection for statistically valid and detectable program impact results.
- Prepared a comprehensive blueprint document for measuring the impacts of Baltimore Gas and Electric Company's Smart Grid Customer Programs. BGE has started deploying smart meters to all of its residential customers in Spring of 2012 and is scheduled to complete the deployment over a three-year period. BGE developed a full-scale program, "Smart Energy Manager (SEM)" program, to meet a central objective of the Smart Grid Initiative - customer education and engagement in a Smart Grid environment. The blueprint documented the design elements of the SEM program and introducing the approaches that will be used to measure the impacts of different SEM tools once the program is in the field and sufficient data are collected.
- Measurement and evaluation for in-home displays, home energy controllers, smart appliances and alternative rates for FPL. Carried out a 2-year impact evaluation of a dynamic and enabling technology pilot program. Used econometric methods to estimate the changes in load shapes, changes in peak demand, and changes in energy consumption for three different treatments. The results of this study were shared with Department of Energy as to fulfill the data reporting requirements of FPL's Smart Grid Investment Grant.
- Pricing and technology pilot design and interim impact evaluation for Commonwealth Edison Company (ComEd). Assisted ComEd in the design of an ambitious pilot program that included approximately 25 different treatment cells. The pilot, which is the first "opt-out" pilot program of its kind, involved 8,000 customers and tested the impact of dynamic prices with and without customer education, informational feedback through basic and advanced feedback devices, and other enabling technologies in the summer of 2010. Conducted an interim impact evaluation study preceding the formal impact evaluation of the study, which is planned to be completed by the end of 2011.

- Pricing and technology pilot design and impact evaluation for Consumers Energy. Designed Consumers Energy's pricing and technology pilot and conducted the impact evaluation study after the pilot was completed in September 2010. The pilot tested critical peak pricing (CPP) and peak time rebates (PTR) in conjunction with information treatment and technology. The pilot also tested the potential "Hawthorne bias" for a group of control group customers who were aware of their involvement in the pilot.
- Member of a Technical Advisory Group (TAG), which was formed by Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL). Reviewed and provided feedback on the experimental designs of the utilities that were awarded Smart Grid Investment Grant projects and participated in periodic project review meetings with utilities to review and provide feedback on the interim results as they implement their projects. As part of this assignment, authored a guidance document that discussed different impact evaluation methods, which can be selected by the utilities. This document was shared with the utilities and other TAG members.
- For an Independent System Operator (ISO), designed, managed and analyzed a market research to help improve participation in retail electricity products that encourage price-responsive demand (PRD). The research determined customer preferences for various time-based pricing products that would help define PRD products that may be developed in the ISO for each customer class. ISO will use the results of this research to assist in modifying wholesale market design to better support such PRD products.
- Assisted a client in conceptually developing a new product that would increase customer participation and performance in energy efficiency (EE) and demand response (DR) programs. Developed Total Resource Cost (TRC) tests for a few targeted EE and DR programs, and modeled the benefits and costs with and without the client's new product offering
- Co-authored a whitepaper reviewing the results from five recent pilot and full-scale programs that investigated low-income customer price-responsiveness to dynamic prices. The core finding of the whitepaper is that low income customers are responsive to dynamic rates and that many such customers can benefit even without shifting load.
- For a large California utility, conducted an econometric analysis, which investigated the role of weather conditions, smart meter installations, and electricity rate increases, among other control variables, in explaining the changes in the monthly usages and bills of a group of complaining customers. Estimated pooled regressions using a panel dataset, as well as individual customer regressions for more than 1,000 customers.
- Assisted an Illinois electric utility in the assessment of alternative baseline calculation for implementing peak time rebate (PTR) programs. Under a PTR program, participants receive a cash rebate for each kWh of load that they reduce below their baseline usage during the event

hours. This requires establishment of a baseline load from which the reductions can be computed. The analysis involved simulating baselines for more than 2,000 customers using five alternative methodologies for several event days. Identified and recommended the baseline calculation methodology that yielded the most accurate baseline for individual customers, through the use of MAPE and RMSE statistics.

- Evaluated the Plan-It Wise Energy program (PWEP) of Connecticut Light and Power (CL&P) Company. PWEP tested the impacts of critical peak pricing (CPP), peak time rebates (PTR), and time of use (TOU) rates on the consumption behaviors of residential and small commercial customers. Each rate design was tested with high and low price variation as well as with and without enabling technologies. Conducted an econometric analysis to determine weather dependent substitution and daily price elasticities and subsequently quantified demand and energy impacts for each of the treatments tested in the PWEP. Developed optimal rate designs to be adopted in a full deployment scenario.
- For Baltimore Gas and Electric Company, assisted in the preparation of direct and rebuttal expert testimonies before the Maryland Public Service Commission, that explain the design and results of 2008 and 2009 Smart Energy Pricing (SEP) pilots.
- Evaluated the Smart Energy Pricing (SEP) pilot program of Baltimore Gas and Electric Company for three consecutive years. The pilot was designed to quantify the impacts of critical peak pricing (CPP) and peak time rebates (PTR) on residential customer consumption patterns. Conducted an econometric analysis to estimate demand systems and predict substitution and daily price elasticities for participating customers. Using the parameters of the demand equations, quantified demand, energy, and bill impacts associated with the programs. Impacts of the socio-demographic characteristics of the participants as well as their ownership of enabling technologies were separately identified on the demand response of the program participants.
- Co-authored a business practice manual for forecasting price responsive demand (PRD) in Midwest ISO. The draft manual introduces different methodologies for measuring and incorporating PRD into forecast LSE requirement for LSEs that are at different stages of rollingout their out their dynamic pricing programs. The draft manual also proposes methodologies for the verification of the forecasted demand net of PRD for long term planning purposes.
- Assisted in the development of an affidavit that evaluates the implications of PJM's proposed revisions to the Operating Agreement (OA) on barriers to participation in PJM's Economic and Emergency Load Response programs.
- Co-authored a whitepaper on "Moving Toward Utility-Scale Deployment of Dynamic Pricing in Mass Markets" for Institute for Electric Efficiency. Whitepaper is intended to help facilitate nationwide progress toward the deployment of dynamic pricing of electricity by summarizing

information that may assist utilities and regulators who are assessing the business case for advanced metering infrastructure (AMI).

- Assisted a New York utility in benchmarking their existing Demand Response (DR) portfolio to the best practice in U.S. and recommended improvements in their planned DR portfolio. Also assisted the utility in quantifying costs and benefits of pilot programs proposed in their DR filing before the State of New York Public Service Commission.
- Assisted an electric utility in developing a residential pricing pilot program that tests incliningblock rate (IBR) structure. More specifically, designed several revenue neutral IBR alternatives and quantified load reduction and bill impacts from these IBR rates.
- Assisted an electric utility in their dynamic rate design efforts. Conducted impact analyses of converting from a flat rate design to alternative dynamic rate designs for each of the five major customer rate classes of the utility. Developed models that allow simulation of energy, demand, and bill impacts by season, day type and time period for an average customer from each of customer classes.
- Simulated the potential demand response of an Illinois utility's residential customers enrolled in real time prices. Results of this simulation were used in recent Midwest ISO Supply Adequacy Working Group (SAWG) meeting to facilitate conversation about price responsive demand in the region. Simulations were run for different scenarios including historic versus spiky real-time prices; peak versus uniform allocation of capacity charges; and with and without enabling technologies.
- Designed a survey on Long-run Drivers of U.S. Energy Efficiency and Demand Response Potential on behalf of EPRI and EEI. Conducted statistical analyses to examine the survey responses, which were turned in by more than 300 power industry leaders and academic experts. Using the outcomes from this survey, assisted in the development of future scenarios to model energy efficiency and demand response impact through 2030.
- Assisted in the preparation of an EEI report that quantifies the benefits to consumers and utilities of dynamic pricing. Undertook a comprehensive review of the dynamic pricing programs across the U.S. and elsewhere. Also implemented price response simulations to quantify the likely peak demand reductions that would realize under alternative dynamic pricing schemes.

DISTRIBUTED ENERGY RESOURCES AND GRID MODERNIZATION

 Development of an Econometric Based EV Forecast for Baltimore Gas and Electric Company. The Brattle Team has compiled a comprehensive repository of national EV adoption related data and estimated an econometric model to explain the drivers of US EV sales, using data from 50 states, from 2011-2019. BGE had expressed a strong preference for a model that relates drivers of EV adoption to sales and did not want to use top down forecasts or a diffusion models due to their inflexibility to update assumptions. With the econometric model, it was possible to develop various forecasts depending on federal, state and utility incentives; different battery cost trajectories; alternative EV TOU rates; utility owned charging infrastructure among many other drivers. This econometric model was also supplemented by another system-dynamics based module that captured the supply side drivers of EV sales such as increasing model availability, charging infrastructure and improved R&D activities. Brattle team developed alternative EV sales scenarios for BGE's service territory and analyzed the impacts of EV load (under managed and unmanaged scenarios) on utility ratemaking, infrastructure investments and other financial metrics.

- For a U.S. utility, reviewed the utility's benefit cost assessment model used to evaluate distributed energy resources for alignment with commission orders and staff guidance. The assessment identified areas for refinement, including increasing the temporal and geographic granularity of the model. As part of the review, the Brattle team provided insights into potential misalignments between the valuation of transmission and distribution investment deferral within the model, customer value, and system value. The Brattle team rebuilt the model from the ground-up to allow for intuitive use and ensure that assumptions are clearly articulated and well-documented.
- For PGE, led the Brattle team developing EV potential as part of PGE's 2021 DER potential study. Developed light, medium and heavy duty vehicle forecasts through 2040, and quantified the peak, energy and EV charging infrastructure implications of these EV forecasts.
- For an east coast IOU, conducted analysis to forecast how the utility's load would increase if
 aggressive decarbonization goals are met through electrification, and to determine the
 extent to which energy efficiency and load flexibility measures could mitigate that load
 growth, highlighting the key role that load flexibility will play in facilitating the
 decarbonization transition.
- For a DER software developer, estimated the potential market value of residential load flexibility offerings across five utilities. The analysis highlighted that the load flexibility value proposition varies significantly depending on system and market conditions. The final report is a key input to the company's load flexibility business case.
- For a large east-coast utility, reviewed benefit cost framework and model data to evaluate nonpipe options. The review included treatment of geographic differences in marginal costs due to pipeline access, and the Brattle team rebuilt the model from the ground-up to allow for intuitive use.

- System Dynamics Modeling of DER Adoption and Utility Business Impacts. Led the development
 of Brattle's Corporate Risk Integrated Strategy Platform (CRISP) model and assisted utility clients
 with the implementation of this model. CRISP is based on System Dynamics approach, which
 creates simulations based on dynamic feedbacks between utility policies and customer
 behavior, providing a new perspective on how much and how fast the "utility of the future"
 must evolve. The focus of these modeling efforts was to help utilities anticipate and
 accommodate distributed energy resources (DERs) as they become more economical and more
 widely adapted by retail electricity customers, and to evaluate the sustainability of their
 traditional cost-of-service business model in the face of such trends.
- Co-led a study for EPRI that analyzed a variety of approaches to representing DERs in utility
 planning models. Started with energy efficiency as the first DER to be analyzed, and undertook a
 comprehensive literature review to capture the complete range of options for evaluating EE in
 IRPs. Next, quantitatively evaluated the impact of the EE modeling method on important IRP
 objectives such as minimizing total resource costs, meeting environmental goals, and avoiding
 suboptimal resource planning decisions.
- Estimated NEM cross-subsidies using data from sixteen utilities. Used cost-of-service methodology to compare NEM customers costs on the system vs. revenue collection from these customers using company COS studies, and supplementing it by publicly available data on solar PV production profiles, installed DG capacity by utility and system load profiles.
- Wrote a comprehensive report for National Electrical Manufacturer's Association (NEMA) that reviews most recently approved 10 major grid modernization projects. Report discusses business cases and cost recovery mechanisms for each of these projects and documents how grid modernization technologies have benefitted customers and utilities.
- Analyzed the impacts of electric utility infrastructure investment on system reliability and resiliency for a Northeastern Utility, following major weather events. Primary area of analysis involved estimation of economic value of investments to customers using value of lost load (VOLL) metrics for electric system investments.
- Assisted Pepco Holdings, Inc. to analyze the Phase I of its Conservation Voltage Reduction (CVR) program in its Maryland Service Territory. First of its kind, this econometric study compares consumption of the treatment and control groups before and after the implementation of CVR. More specifically, a regression analysis was conducted to compare the usage levels of treatment and control group customers to determine whether the CVR treatment resulted in statistically significant conservation and peak demand impacts. The analysis accounts for exogenous factors such as weather, calendar and seasonality impacts as well as utility energy and demand savings programs.

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-1 Page 12 of 22

DECARBONIZATION POLICY AND RESOURCE PLANNING

- Evaluated how policy reforms could increase access and decrease costs of C&I renewable procurement for the REBA Institute, a group representing commercial and industrial (C&I) customers in the United States, through utility subscription programs, power purchase agreements, and third-party retailer providers. The report finds that there is much potential to increase C&I procurement and costs, but the policy pathway to enable these results is dependent on state characteristics. The report finds that introducing supply choice has the greatest potential to increase access but presents uncertainty regarding costs, and that utility subscription programs can present significant near-term opportunities.
- Currently assisting New York City's Mayor's Office of Sustainability to evaluate how a carbon trading scheme would impact the costs and benefits of implementing Local Law 97, an ambitious building-sector decarbonization law that mandates 80% emission reductions by 2050. In collaboration with larger consulting team, Brattle team is evaluating building segment data regarding the size and energy use of buildings covered by LL97, reviewing and modeling efficiency and electrification emission abatement retrofits, modeling building owner decision making to comply with the law, and is designing carbon trading policy to ensure the program meets the needs of the city government, environmental justice community, and ultimately lowers societal costs.
- Led the Brattle team that assisted the New York City Mayor's Office of Sustainability with the development of New York City's Roadmap to 80 x 50. The Brattle team analyzed the change in energy-sector greenhouse gas (GHG) emissions resulting from more than six future scenarios. These scenarios explored the impacts of aggressive energy efficiency efforts, off-shore wind, and the continuance of low natural gas prices on the emissions footprint of New York City. The analysis shows that in order to reach 80 x 50, New York City will need to achieve a significant portion of its GHG reductions as a result of a dramatic shift towards a renewables-based grid. This shift towards renewables must overcome the anticipated retirement of nuclear facilities prior to 2050 and will be supported by the implementation of New York State's Clean Energy Standard and the declining cost of renewable energy.
- Conducted a study involving "solar to solar" comparison of equal amounts of residential- and utility-scale PV solar deployed in Xcel Energy Colorado's Service Area. Calculated costs and benefits of each of these two different but equally sized solar options, i.e., avoided energy, capacity and distribution network costs and others. The study found carbon reductions were greater on utility scale systems because the solar energy per MW is much higher on utility-scale due to better placement and tracking capability.
- Advised Nova Scotia Power Inc. on the reasonableness of the DSM scenarios and strategies that are being modeled in their Integrated Resource Plan (IRP). This effort also involved advising the

Company on a variety of DSM issues and building up a model that quantifies the rate impacts for program participants and non-participants based on the selected DSM scenario.

- Coauthored the State's Annual Integrated Resource Plan (IRP) for the Connecticut Department
 of Energy and Environmental Protection (DEEP). This effort involved development of scenarios
 and strategies for an electric system to meet long-range electric demand while considering the
 growth of renewable energy, energy efficiency, other demand-side resources. Led the
 development of demand side management and emerging technology resource strategies and
 analyses involving these resources.
- Developed a model to assess the prudence of an electric utility's power procurement strategy in comparison to several other alternative options. As a result of this model, she assessed whether it is prudent to recover the congestion and loss costs associated with utility's chosen strategy from ratepayers in a state regulatory proceeding.
- Assisted in preparation of a marginal cost study for an integrated electric utility. The study
 estimated the incremental costs to the utility of serving additional demand and customer by
 time period, sub-region, and customer class. The costs were identified as energy, capacity and
 customer related for generation, transmission, and distribution systems of the utility.
- Assisted in developing an integrated resource plan for major electric utilities. Contributed to the
 design of future scenarios against which the resource solutions were evaluated. Designed
 scenarios were driven by external factors including fuel prices, load growth, generation
 technology capital costs, and changes in environmental regulations. Forecasted the inputs series
 for the resource planning model consistent with each of the designed scenarios.

DEMAND FORECASTING

- For an Asian utility considering an investment on a generation plant in PJM, we have reviewed, replicated, and developed alternative load forecasts using PJM's 2017 update. We have determined several uncertainty factors that are not fully captured in PJM's forecasting framework and developed "low load" and "high load" scenarios after accounting for these factors.
- For an electric utility in the Southeast, reviewed load forecasting models for residential and commercial customer classes. Assessed the accuracy and validity of the models by reviewing the historic and forecast period inputs to the model; model specification; in-sample and out-of-sample accuracy statistics; and incorporation of DSM impacts to the model, among many others. Also conducted an analysis using the U.S. Energy Information Administration's Annual Energy Outlook (AEO) data to determine the forecast errors during pre and post-recession periods.

- Developed a blueprint for integrating energy efficiency program impacts into the load forecasts for a Canadian Utility. This effort involved estimating the future impact of energy efficiency programs to be included in the load forecasts and developing price elasticity estimates that can be used to forecast the impact of the future changes in the price of electricity.
- Developed a load forecasting model for the pumping load of California State Water Project. Identified the main drivers of pumping load in major pumping stations. Through Monte Carlo simulations, quantified the uncertainty around load forecasts.
- Assisted in the preparation of testimony that evaluates the reasonableness of Florida Power and Light Co.'s total customer and monthly net energy for load (NEL) forecasting models. In addition to evaluating the methodology, also reviewed the reasonableness of the inputs used in the historic and forecast periods and assessed the soundness of ex-post adjustments made to the forecasts.
- Assisted PJM in the evaluation of its models for forecasting peak demand and re-estimated new models to validate recommendations. Predicted forecasting errors of the existing models and helped improving the forecast methodology by introducing the state-of-the art estimation techniques. Individual models were developed for 18 transmission zones as well as a model for the entire PJM system.
- Assisted a large utility in New York in understanding the decline in electric sales during the recent past and attributed the decline to a change in customer expectations of future income, based on declining consumer confidence that has been created by the lingering economic recession.
- Reviewed the structure of the Tennessee Valley Authority's energy sales forecasting models by sector, assessed the magnitudes of the price elasticities and the model specifications used to generate them, analyzed the ability of the models to generate a baseline forecast that could serve as a point of reference when evaluating the likely impacts and cost-effectiveness of a wide range of new energy efficiency and demand response programs.
- Developed a demand forecast model for one of the world's largest steam system operators.
 Estimated regression models to predict the price elasticities and switching behavior of different consumer classes. Also helped in the development of a model to forecast the impact of alternative steam tariffs on the consumption and switching patterns of consumers.

ENERGY LITIGATION AND MARKET POWER ANALYSIS

For the California Parties, provided Brattle witness with litigation support and testimony
regarding manipulation of electric power and natural gas prices in the western U.S. during 200001. The proceeding, before the Federal Energy Regulatory Commission involved Enron, Dynegy,
Mirant, Reliant, Williams, Powerex and many other suppliers in the U.S. and Canada.

- Part of a Brattle team that analyzed the impacts of a merger, involving FirstEnergy and West Penn Power, on competition in retail electricity markets on behalf of Brattle testifying expert Mr. Frank Graves. Both companies owned electric distribution companies, transmission assets, generation resources, and retail electricity providers in several Mid-Atlantic States. The analysis involved assessment of whether the increased market share in wholesale energy markets affects retail competition, the number of suppliers in retail electricity markets, the ease of entry and exit to provide electricity to retail customers directly or through default service procurements, and the potential for abusing affiliate relationships with the electric distribution company to favor the retail electricity provider affiliate.
- Assisted in preparing affidavit before the Federal Energy Regulatory Commission examining
 whether the proposed acquisition of a power plant by an electric utility would lead to anticompetitive effects on wholesale market competition. In addition to performing market power
 tests required by FERC, directed an analysis that investigates the historical electric trading
 patterns between the acquiring utility and the other parties in the relevant geographical
 market. FERC agreed with the conclusion of the affidavit and authorized the transaction.
- Assisted in the development of testimony before the Postal Rate Commission involving calculation of mail processing variabilities and data quality issues. Addressed the endogeneity problems in the estimation of the variabilities using the instrumental variables approach.

TECHNICAL AND EXPERT REPORTS

- *PC44 Time of Use Pilots: Year One Evaluation*, with Ahmad Faruqui, Nicholas E. Powers, Sai Shetty, and Jingchen Jiang, prepared for Maryland Joint Utilities (September 15, 2020)
- Nova Scotia Utility and Review Board: Time-Varying Pricing Project Submission, with Ahmad Faruqui, prepared for the Nova Scotia Power (June 30, 2020)
- Getting to 20 Million EVs by 2030: Opportunities for the Electricity Industry in Preparing for an EV Future, with Michael Hagerty and Long Lam, published by The Brattle Group, Inc. (June 2020)
- *Renewable Energy Policy Pathways*, with Judy Chang, Kasparas Spokas, Maria Castaner, and Peter Jones, prepared in collaboration with the REBA Institute (May 2020)

- Gross Avoidable Cost Rates for Existing Generation and Net Cost of New Entry for New Energy Efficiency, with Samuel A. Newell, Michael Hagerty, Evan Cohen, Sang H. Gang, John Wroble, and Patrick S. Daou, prepared for PJM (March 17, 2020)
- Energy Efficiency Administrator Models: Relative Strengths and Impact on Energy Efficiency Program Success, with Nicole Irwin, prepared for Uplight (November 2019)
- Incorporating Distributed Energy Resources into Resource Planning: Energy Efficiency, with Ryan Hledik, D.L. Oates, Tony Lee, and Jill Moraski, prepared for EPRI (May 2019)
- Status of DSM Cost Recovery and Incentive Mechanisms, with Ahmad Faruqui, Elaine Cunha, and John Higham, prepared for Baltimore Gas & Electric (February 20, 2019)
- Exploring the Use of Alternative Regulatory Mechanisms to Establish New Base Rates: Response to PC51 Request for Comments, W. Zarakas, S. Sergici, P. Donohoo-Vallett, and N. Irwin, prepared for Joint Utilities of Maryland and filed in support of comments in PC51 for the Maryland Public Utilities Commission (March 29, 2019)
- U.S. Alternative Regulatory Mechanisms: Scope, Status and Future, with William Zarakas and Pearl Donohoo-Vallett, prepared for Baltimore Gas & Electric, Delmarva Power & Light and Pepco (February 19, 2019)
- A Review of Pay for Performance (P4P) Programs and M&V 2.0, with Heidi Bishop and Ahmad Faruqui, prepared for Commonwealth Edison (July 20, 2018)
- *Reviewing the Business Case and Cost Recovery for Grid Modernization Investments,* with Michelle Li and Rebecca Carroll, prepared for National Electrical Manufacturers Association (NEM) (2018)
- *Pepco Maryland In-Home Display Pilot Analysis,* with Ahmad Faruqui, prepared for Pepco (June 2017)
- *80x50 Energy Sector Model Assumptions and Results,* with Michael Kline and Pearl Donohoo-Vallett, prepared for the Mayor's Office of Sustainability (January 4, 2017)
- Impact Evaluation of Pepco District of Columbia's Portfolio of Energy Management Tools, with Ahmad Faruqui and Kevin Arritt, prepared for Pepco District of Columbia (October 2016)
- Impact Evaluation of Delmarva Maryland's Portfolio of Energy Management Tools, with Ahmad Faruqui and Kevin Arritt, prepared for Delmarva Maryland (April 2016)
- Impact Evaluation of Pepco Maryland's Portfolio of Energy Management Tools, with Ahmad Faruqui and Kevin Arritt, prepared for Pepco Maryland (January 2016)

- Impact Evaluation of Pepco Maryland's Phase I Conservation Voltage Reduction (CVR) Program, with Ahmad Faruqui and Kevin Arritt, prepared for Pepco Maryland (July 2015)
- Analysis of Ontario's Full Scale Roll-out of TOU Rates Final Study, with Neil Lessem, Ahmad Faruqui, Dean Mountain, Frank Denton, Byron Spencer, and Chris King, prepared for Independent Electric System Operator (February 2016) <u>http://www.ieso.ca/Documents/reports/Final-Analysis-of- Ontarios-Full-Scale-Roll-Out-of-TOU-Rates.pdf</u>
- Comparative Generation Costs of Utility-Scale and Residential Scale PV in Xcel Energy Colorado's Service Area, with Bruce Tsuchida, Bob Mudge, Will Gorman, Peter Fox-Penner and Jens Schoene (EnernNex), prepared for First Solar (July 2015)
- Quantifying the Amount and Economic Impacts of Missing Energy Efficiency in PJM's Load Forecast, with Ahmad Faruqui and Kathleen Spees, prepared for The Sustainable FERC Project (September 2014)
- Assessment of Load Factor as a System Efficiency Earning Adjustment Mechanism, with William Zarakas, Kevin Arritt, and David Kwok, prepared for The Joint Utilities of New York (February 2017)
- Expert Declaration in a Patent Dispute Case involving a Demand Response Product (July 2014)
- Measurement and Verification Principles for Behavior-Based Efficiency Programs, with Ahmad Faruqui, prepared for Opower (May 2011) http://opower.com/uploads/library/file/10/brattle_mv_principles.pdf
- *Moving Toward Utility-Scale Deployment of Dynamic Pricing in Mass Markets,* with Ahmad Faruqui and Lisa Wood, IEE Whitepaper (June 2009)
- The Impact of Dynamic Pricing on Low Income Customers, with Ahmad Faruqui and Jennifer Palmer, IEE Whitepaper (June 2010)

ARTICLES & PUBLICATIONS

- "Bridging the Chasm between Pilots and Full-Scale Deployment of Time-of-Use Rates," *The Electricity Journal*, Volume 33, Issue 10 (December 2020)
- "Top Performing States in Energy Efficiency: Top States' Secret Sauce," *Public Utilities* Fortnightly (March 2020)

- "Quantifying Net Energy Metering Subsidies," with Yingxia Yang, Maria Castaner, and Ahmad Faruqui, *The Electricity Journal*, Volume 32, Issue 8 (October 2019)
- "Arcturus 2.0: A Meta-analysis of Time-varying Rates for Electricity," with Ahmad Faruqui and Cody Warner, *The Electricity Journal*, Volume 30, Issue 10 (December 2017)
- "Do Manufacturing Firms Relocate in Response to Rising Electric Rates?" with Ahmad Faruqui, *Energy Regulation Quarterly*, Volume 5, Issue 2 (June 2017)
- "Dynamic Pricing Works in a Hot, Humid Climate," with Ahmad Faruqui and Neil Lessem, Public Utilities Fortnightly (May 2017)
- "The impact of AMI-enabled conservation voltage reduction on energy consumption and peak demand," with Kevin Arritt and Sanem Sergici, *The Electricity Journal*, 30:2, pp. 60-65 (March 2017) http://www.sciencedirect.com/science/article/pii/S1040619016302536
- "Integration of residential PV and its implications for current and future residential electricity demand in the United States," with Derya Eryilmaz, *The Electricity Journal*, 29, 41-52 (2016)
- "Impact Measurement of Tariff Changes when Experimentation is not an Option A case study of Ontario, Canada," with Neil Lessem and Dean Mountain, *Energy Economics*, 52, pp. 39-48 (December 2015)
- "Utility Investments in Resiliency: Balancing Benefits with Cost in an Uncertain Environment," with William Zarakas, *et al., The Electricity Journal*, Volume 27, Issue 5 (June 2014)
- "Low Voltage Resiliency Insurance: Ensuring Critical Service Continuity during Major Power Outages," with William Zarakas and Frank Graves, *Public Utilities Fortnightly* (September 2013)
- "Arcturus: International Evidence on Dynamic Pricing," with Ahmad Faruqui, *The Electricity Journal*, 26:7, pp. 55-65 (August/September 2013)
- "Dynamic Pricing of Electricity for Residential Customers: The Evidence from Michigan," by Ahmad Faruqui, Sanem Sergici and Lamine Akaba, *Energy Efficiency*, 6:3, pp. 571–584 (August 2013)
- "Dynamic Pricing of Electricity in the Mid-Atlantic Region: Econometric Results from the Baltimore Gas and Electric Company Experiment," with Ahmad Faruqui, *Journal of Regulatory Economics*, 40(1), pp. 82–109 (2011)

- "The Untold Story of: A Survey of C&I Dynamic Pricing Pilot Studies," with Ahmad Faruqui and Jenny Palmer, *Metering International*, Issue 3 (2010)
- Divestiture policy and operating efficiency in U.S. electric power distribution," with John E. Kwoka, Jr., and Michael Pollitt, *Journal of Regulatory Economics* (June 2010)
- "Household Response to Dynamic Pricing of Electricity A Survey of the Experimental Evidence," with Ahmad Faruqui, *Journal of Regulatory Economics* (October 2010)
- "Rethinking Prices," with Ahmad Faruqui and Ryan Hledik, *Public Utilities Fortnightly* (January 2010)
- "Piloting the Smart Grid," with Ahmad Faruqui and Ryan Hledik, *The Electricity Journal* (August/September 2009)
- "The Impact of Informational Feedback on Energy Consumption A Survey of the Experimental Evidence," with Ahmad Faruqui and Ahmed Sharif, *Energy-The International Journal* (August 2009)
- "Three Essays on U.S. Electricity Restructuring," Unpublished Ph.D. Thesis, Northeastern University (August 2008)

PRESENTATIONS & SPEAKING ENGAGMENTS

- "A New Approach to Strategic Planning in a High Distributed Resource Environment: Distributed Solar as a Case Study," Next-Gen Smart Grid Virtual Summit (December 9, 2020)
- "What Explains the Success of Top Performing States in Energy Efficiency?" NRRI Webinar (August 19, 2020)
- "A Blueprint to Pilot Design: Best Practices and Lessons Learned," MI Power Grid: Energy Programs and Technology Pilots Stakeholder Meeting (April 30, 2020)
- "Policies in Support of Customers' Purchase of Renewable Energy," NARUC Annual Meeting & Education Conference (November 18, 2019)
- "Rate Reform in Evolving Energy Marketplace," EUCI Residential Demand Charges/TOU Summit (May 30, 2019)
- "Grid Modernization: Policy, Market Trends and Directions Forward," 4th Annual Grid Modernization Forum, Chicago, IL (May 21, 2019)
- "Accelerating the Renewable Energy Transformation: Role of Green Power Tariffs and Blockchain," EUCI Southeast Clean Power Summit (February 25, 2019)

- "The Case for Alternative Regulation and Unintended Consequences of Net Energy Metering," 46th Annual PURC Conference, Gainesville, FL (February 21, 2019)
- "Reviewing Grid Modernization Investments: Summary of Recent Methods and Projects," National Electrical Manufacturers Association (NEMA) (December 4, 2018)
- "Enabling Grid Modernization Through Alternative Rates and Alternative Regulation," Energy Policy Roundtable in the PJM Footprint (November 29, 2018)
- "Return of Pay-for-Performance Stronger with M&V 2.0," BECC Conference, Innovations in Models, Metrics, and Customer Choice, Washington DC (October 2018)
- "Rate Design in a High DER Environment," MEDSIS Rate Design Workshop, Washington DC, (September 2018)
- "Demand Response for Natural Gas Distribution," Center for Research in Regulated Industries (CRRI) 31st Annual Western Conference, Monterey CA (June 2018)
- "Status of Restructuring: Wholesale and Retail Markets," National Conference of State Legislatures Workshop, "Electricity Markets and State Challenges," Indianapolis IN (June 2018)
- "Dynamic Pricing Works in a Hot and Humid Climate: Evidence from Florida," International Energy Policy & Programme Evaluation Conference, Bangkok Thailand (November 2017)
- "Understanding Residential Customer Response to Demand Charges: Present and Future," EUCI Residential Demand Charges Conference, Chicago IL (October 2016)
- "Utility Leaders Workshop: An Evolving Utility Business Model for the Caribbean," Caribbean Renewable Energy Forum, Miami FL (October 2016)
- "Impact of Residential PV Penetration on Load Growth Expectations," AEIC Western Load Research Conference, September 2016.
- "Moving away from Flat Rates," Smart Grid Consumer Collaborative, Chicago, IL (September 2016)
- "Residential Demand Charges: An Overview," EUCI Demand Charge Conference, Phoenix AZ (June 2016)
- "Conservation Voltage Reduction Econometric Impact Analysis," AESP Spring Conference, Washington DC (May 2016)

- "Caribbean Utility 2.0 Workshop- Economics, Tariffs and Implementation: The Challenge of Integrating Renewable Resources and After Engineering Solutions," co-hosted and presented at the Caribbean Renewable Energy Forum, Miami FL (October 2015)
- "Dispelling Common Residential DR Myths," eSource Conference (October 2015)
- "Low Income Customers and Time Varying Pricing: Issues, Concerns, and Opportunities," NYU School Law's Forum on New York REV and the Role of Time Varying Pricing (March 2015)
- "Dynamic Pricing: Transitioning from Experiments to Full Scale Deployments," EDF Demand Response Workshop, Paris, France (July 2014) and Governors Association's Michigan Retreat on Peak Shaving to Reduce Wasted Energy (August 2014)
- "Impact Evaluation of TOU Rates when Experimentation is not Option: A Case Study of Ontario, Canada," 2014 Smart Grid Virtual Summit, Boston (June 2014)
- "Residential Demand Response Opportunities," Opower Webinar Series, Boston (June 2014)
- "Impact Evaluation of TOU Rates when Experimentation is not Option: A Case Study of Ontario, Canada," 33rd Annual Eastern CRRI Conference (May 2014)
- "The Arc of Price Responsiveness—Consistency of Results Across Time-Varying Pricing Studies," Chartwell Webinar, Boston (May 2013)
- "Evaluation of Baltimore Gas and Electric Company's Smart Energy Pricing Program," 9th International Industrial Organization Conference, Boston, MA (April 2011)
- "Dynamic Pricing: What Have We Learned?" Electricity Markets Initiative Conference, Harrisburg, PA (April 2011)
- "Do Smart Rates Short Change Customers," Demand Resource Coordinating Committee Webinar (December 2010)
- "Opening Remarks and Session Chair of Day 1," FRA Conference on Customer Engagement in a Smart Grid World, San Francisco, CA (December 2010)
- "The Impact of Informational Feedback on Energy Consumption," 2010 National Town Meeting on Demand Response and Smart Grid (June 2010)
- "The Impact of In-Home Displays on Energy Consumption," Colorado Public Service Commission (June 2010)
- "Does Dynamic Pricing Work in the Mid-Atlantic Region: Econometric Analysis of Experimental Data," Center for Research in Regulated Industries (CRRI) 29th Annual Eastern Conference (May 2010)
- "Distributed Generation in a Smart Grid Environment," panel speaker at the Center for Research in Regulated Industries (CRRI) 29th Annual Eastern Conference (May 2010)
- "Power of Information Feedback: A Survey of Experimental Evidence," Peak Load Management Alliance (PLMA) Webinar (April 2010)
- "Customer Response to Dynamic Pricing A Long Term Vision," 2009 NASUCA Mid- Year Meeting, Boston (June 2009)
- "BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation," Association of Edison Illuminating Companies (AECI) Conference, Florida (May 2009)
- "California and Maryland Are They Poles Apart?," Western Load Research Association Conference, Atlanta (March 2009)
- "Experimental Design Considerations in Evaluating the Smart Grid," Smart Grid Information Session Massachusetts DPU (December 2008)
- "Divestiture, Vertical Integration, and Efficiency: An Exploratory Analysis of Electric Power Distribution," 4th International Industrial Organization Conference, Boston, Massachusetts (2006)

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-2 Page 1 of 7

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-2 Page 2 of 7

Public Service of New Hampshire d/b/a Eversource Energy Docket No. DE 20-170

Date Request Received: 07/21/2021 Request No. DOE 2-019 Request from: Department of Energy Date of Response: 08/04/2021 Page 1 of 1

Witness: Dennis E. Moore

Request:

Reference Company Response Staff 1-010, stating "The initial activity to identify these costs and a timeline was to capture high level scope and business requirements for a proposed dynamic EV TOU rate which included up to 3 daily periods differentiated for weekdays, weekends and holidays. Through a series of requirement gathering sessions, high-level requirements for metering, billing and reporting system modifications were identified. These high-level requirements were subsequently used to estimate incremental IT costs for solution development & testing as well as project support costs. The lead time of 30 months includes activities for project mobilization, requirements refinement (6 months), plus a development and delivery timeline of roughly up to 24 months based off of past projects with equivalent scope and complexity." Please provide any documents prepared in order to identify costs and a timeline, including meeting minutes, agendas, memos, presentations, or other materials.

Response:

Please refer to Attachment 1 for a summary of the Company's cost estimate and Attachment 2 for the final project scope and business requirements for implementation of the propose rate.

Project Details	Estimate	Timeline		
Incremental Development and Testing IT Costs	\$7,200,000			
Incremental Project Support Costs	\$1,920,000	10 24 Months		
		18 - 24 Months		
Total	\$9,120,000			

Key Assumptions:

- 1. This is a high-level order of magnitude estimate and timeline using only incremental Vendor, Supplier, and Contractor costs.
- 2. Assumes that 3-part usage data will be sent to competitive suppliers for purposes of pass-through billing and that changes will be made to C2 billing system for Eversource to bill 3-part prices on behalf of competitive suppliers for complete billing.
- 3. Metering, billing, and reporting changes are required to build a new Electric Vehicle rate.
- 4. Estimate does not include meter purchase, installation, nor overhead related to meter management.
- 5. Estimate includes resource cost associated with gathering requirements, responding to design questions, testing, training, implementation, and post implementation support.
- 6. Assumes interval read meters are used.
- 7. Bill changes will be required.

Project Name: NH Electric Vehicle 3 Part TOU Rate Date: Updated 03/11/2021 v13

IT Business Solutions Analyst: Business Solution Analysts

Business & IT contributors to this document (title):

- 1. Director
- 2. Manager
- 3. Domain Architect
- 9. Strategist
- Supervisor
 Analyst

11. Consultant

10. Project Manager

7. Analyst

8. Analyst

6. Analyst 12. Developer

- 13. Developer
- 14. Developer
- 15. Manager

Background

As part of the 2020 NH Rate Case Settlement agreement, Eversource has been asked to propose a 3-part electric vehicle charging station Time of Use rate.

Under the proposal, all 3 parts of TOU rate must have different rates for distribution, supply, and transmission. This document outlines the high-level scope for the metering, billing and reporting changes to be made to support the proposal. Using the attached Liberty Utilities proposed rate as a guide, the following are the requirements.

High-Level Business Requirements:

In Scope:

All 3 parts of TOU rate must have different rates for distribution, supply, and transmission.

Metering Requirements

0

1. Business to set up interval meter configuration for 3-part TOU in NH MV90xi to generate BDET (Billing Determinate) file automatically.

Summary of changes to utilize Meter Bill Tracker in the process for 3-part TOU Rate (NEW)

- 2. Create separate instance of the Meter Bill Tracker (MTB) for NH.
 - This includes creating separate instance of Meter Bill File Watcher to import data from C2.
 - Alternatively, modify the existing instance to accommodate NH data.
 - This may be a better long term solution, but take longer to implement.
- 3. PowerTrack Export of meters, modified to get NH interval meters for use by the mainframe C2 COBOL program for extracting customer data.
- 4. C2 COBOL program (KILMRXIN) that extracts customer / meter from C2 to send to the MBT system each morning as the C2 download file.

- $\circ~$ A separate download file should be created for NH
 - or
- The Meter Bill File Watcher service that imports the file to the MBT will need modified to filter on company code for both the CTMA data and the NH data.
- 5. MBT FileWatcher service to import the customer data for NH from the C2 download file.
- 6. MBT UI changes to present the mid-peak values to the user.
- 7. File Scanner BDF Generator process to calculate the index values for mid-peak, based off of the consumption data and prior index values contained within MBT. (Refer to diagram)
- 8. Changes to MBT to accommodate NH Billing cycles in MBT
- 9. Changes to MBT to be able to filter & search NH data.
- 10. Changes to MBT to export the mid-peak index values with the on & off peak values.
- 11. May need a separate export/extract file from MBT to C2 for NH reads. Ideally, you would send NH reads and CTMA (Connecticut / Massachusetts) reads together.
- 12. If NH resources need to be restricted from accessing CTMA data MBT, this would require a change to roles for MBT users to isolate access to NH vs. CTMA data.
- 13. MBT changes to accommodate and/or separate NH data errors.

Billing Requirements

- 1. Create new billing meter type configurations for 3-part TOU.
- 2. Create new usage detail types for 3-part TOU.
- 3. Create new C2 service plan options (residential, commercial) for 3-Part TOU. EV rates will bill On-peak, Mid-Peak, and Critical and Total. Rates for energy (kWh) based changes are based on two seasonal periods.
- 4. Change C2 bill file to send data (including new On-peak, Mid-Peak, and Critical and Total rates) to KUBRA for purposes of bill print. Pending design discussion, this may be a change to the Meter Box on left-hand side of bill and the Billing Determinates on right-hand side of bill calculation. KUBRA will need to make changes to accept the new data in the modified C2 file and render the bill.
- Modify EDI file sent to competitive suppliers to include the 3-part usage (On-peak, Mid-Peak, and Critical and Total). This would be needed for customers who elect pass-through billing but most likely will be required for complete billing customers as well.

Reporting Requirements

- 1. If needed, modify files sent to Load Research to include hourly or native intervals off the interval meter.
- 2. Change existing Revenue Reports for Accounting to track the new EV rate in C2.

Out of Scope:

1. Changes to Eversource.com

Assumptions:

- 1. The MBT solution would be in-place at least until C2 is replaced with SAP.
- 2. No changes required for NH LPB. Assumption is that EV customers can be billed in C2.

- 3. Requirements will be based on the proposed Liberty Utilities Tariff on last page.
- 4. Eversource will own the meter which will be a basic kWh Survey Type One-Channel Interval Meter. That meter is a recording meter that can record in 5 to 30-minute intervals.
- 5. File scanner changes will be required for moving meter data.
- 6. Estimates will include incremental IT effort only.
- 7. Estimate does not include the purchase or installation of the meter nor any of the business overhead related to managing the meters for NH.
- 8. Load Settlement regression testing required.

NHPUC NO. 21 - ELECTRICITY DELIVERY LIBERTY UTILITIES	Third Revised Page 123 Superseding Second Revised Page 123 Rate EV
--	--

Rate EV Plug In Electric Vehicle

Availability Retail Delivery Service under this rate is available for uses of a customer taking service under Rate Relation benefity bettered service. By choosing to participate in this Plug In Electric Vehicle rate, the Customer agrees to pay the following charges for a minimum of two years. The charging station shall be connected by means of an approved circuit to a separate electric vehicle charging meter. The rates for energy (kWh) based charges are seasonal with a winter period from November 1 to April 30 and a summer period from May 1 to October 31.

Character of Service Service supplied under this rate will be single phase, 60 cycle, alternating current, normally three-wire service at a normal voltage of 120/240 volts or three-wire 120/208 volts, whichever is available at the location.

Rates per Month

The rate per month will be the sum of the applicable Customer and Energy Charges subject to the adjustments in this tariff:

Rates for Retai	Delivery Service Effective Novem	ber 1, 2020 through April 30, 2021

Customer Charge	\$11.35 per month
Energy Charges Per Kilowatt-Hour (cents per kilowatt-hour)	
Distribution Charge Off Peak	4.196
Distribution Charge Mid Peak	6 289
Distribution Charge Critical Peak	8.955
Reliability Enhancement Vegetation Management	0.008
Total Distribution Charge Off Peak	4.204
Total Distribution Charge Mid Peak	6.297
Total Distribution Charge Critical Peak	8.963
Transmission Charge Off Peak	0.212
Transmission Charge Mid Peak	0.337
Transmission Charge Critical Peak	13.615
Energy Service Charge Off Peak	7.411
Energy Service Charge Mid Peak	8.871
Energy Service Charge Critical Peak	9 208
Stranded Cost Adjustment Factor	(0.072)
stonii Recovery Rojustineni Factor	0.000
Off peak hours will be from 12AM to 8AM and 8PM to 12AM da	dy.
Mid peak hours will be from SAM to 3PM daily Monday through	Friday, except holidays.
Mid peak hours will be from SAM to SPM Saturday, Sunday and I	iolidays.

Mid peak Critical pe	hours will be from SAM to SP tak hours will be from 3PM to	M Saturday, Sunday and holis SPM daily Monday through F	days. Friday, except holidays.
Issued:	January 13, 2021	Issued by:	Susan L. Fleck
Effective:	February 1, 2021	Title	Susan L. Fleck President

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-3 Page 1 of 3

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-3 Page 2 of 3

Public Service of New Hampshire d/b/a Eversource Energy Docket No. DE 20-170

Date Request Received: 08/13/2021 Request No. DOE 3-008 Request from: Department of Energy Date of Response: 08/27/2021 Page 1 of 1

Witness: Dennis E. Moore

Request:

Reference Eversource Response 2-19, attachment 1.

- a. Please provide the more detailed breakdown of the costs discussed at the August 9, 2021 technical session.
- b. Please also indicate which of these costs would change if Eversource were to revise its EV TOU proposal to reflect a two period, three part TOU rate (G/T/D).
- c. Please also indicate which of these costs would change if Eversource were to revise its EV TOU proposal to reflect a two period, two part TOU rate (T/D).

Response:

a. Refer to Attachment 1 for more detailed breakdown of the costs discussed at the August 9, 2021 technical session.

b. Please refer back to response to DOE 3-001: c.

c. Please refer back to response to **DOE 3-001: d.**

Public Service of New Hampshire dba Eversource Energy Docket No DE 20-170 Data Request DOE 3 Dated 08/27/2021 DOE-3-008 Attachment 1 Page 1 of 1

Below is a line item breakdown of the cost and time estimate discussed in the response to DOE 3-008 - EV 3 Part TOU Rate

Cost Category	Category Description	Q1-Year1	Q2-Year1	Q3-Year1	Q4-Year1	Q1-Year2	Total
Project Management	Incremental labor costs associated with providing project						
	oversight, governance and cost and schedule management						
		\$327,000.00	\$327,000.00	\$327,000.00	\$327,000.00	\$327,000.00	\$1,635,000.00
Requirements, Design and	Incremental labor costs associated with elicitation and						
System Development	preparation of system requirements, designs and code						
	development of the system being modified						
		\$1,386,600.00	\$1,386,600.00	\$1,386,600.00	\$1,386,600.00	\$1,386,600.00	\$6,933,000.00
Testing	Incremental labor costs associated with preparation of test						
	cases, execution of testing to validate the solution is						
	functioning as expected.	\$110,400.00	\$110,400.00	\$110,400.00	\$110,400.00	\$110,400.00	\$552,000.00
Totals		\$1,824,000.00	\$1,824,000.00	\$1,824,000.00	\$1,824,000.00	\$1,824,000.00	\$9,120,000.00

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-4 Page 1 of 2

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-4 Page 2 of 2

Public Service of New Hampshire d/b/a Eversource Energy Docket No. DE 20-170

Date Request Received: 08/13/2021 Request No. DOE 3-001 Request from: Department of Energy Date of Response: 08/27/2021 Page 1 of 1

Witness: Dennis E. Moore

Request:

Reference DOE 2-003 regarding meters and billing system.

- a. If Eversource waits until the planned enterprise MDMS and CIS system upgrades are complete to offer a 3 period EV TOU rate, please provide details how the incremental costs of the 3 period EV TOU rate offering would vary from the \$9.1M cited in testimony.
- b. Please explain when Eversource expects to begin and complete the enterprise MDMS and CIS system, consistent with its Grid Mod Phase II proposal in Massachusetts.
- c. Please provide details on any additional costs that would be required for the existing Eversource billing system to incorporate a 2-period EV TOU rate, with time varying generation, distribution, and transmission components. Please explain why these costs would be required since Eversource currently offers a 2-period TOU rate.
- d. Please provide details on any additional costs that would be required for the existing Eversource billing system to incorporate a 2-period EV TOU rate, with time varying distribution and transmission components only. Please explain why these costs would be required since Eversource currently offers a 2-period TOU rate.

Response:

a. We anticipate the incremental cost reduction to achieve a 3 period EV TOU rate to be between 40-45%, due to the improved capabilities of the new enterprise MDM and CIS systems.

b.The Eversource Grid Mod Phase II proposal in Massachusetts for AMI shows that the Company expects to begin the MDMS in 2023 and complete it at the end of 2025 and expects to begin the CIS system in 2024 and complete it at the end of 2027.

c. The cost to implement a 2-period TOU EV versus a 3-period TOU EV with time varying generation, distribution, and transmission components is the same as this requires a billing system structural change to offer TOU generation and same level of rigor in testing the solution. Eversource utilizes one legacy customer billing system across three states and that would require the same amount of regression testing to ensure no impact to other state jurisdictions with this change.

d. Eversource currently offers 2-period TOU distribution and transmission components in existing Residential Optional-Time-Of-Day (R-OTOD) rate. If R-OTOD off-peak period is identical to 2-period off-peak period TOU EV than R-OTOD rate could be used at no additional billing system cost. Pls. Refer to Attachment 1.

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-5 Page 1 of 2

Public Service of New Hampshire d/b/a Eversource Energy Docket No. DE 20-170

Date Request Received: 07/21/2021 Request No. DOE 2-007 Request from: Department of Energy Date of Response: 08/04/2021 Page 1 of 1

Witness: Edward A. Davis

Request:

Reference Exhibit ES-RDC-1 in DPU 21-90, page 18-19, describing how rate EV-1 and EV-2 were constructed.

- a. Please provide the workpapers used to develop these rates, in native format (live excel, where applicable) with all equations intact.
- b. Please clarify whether the Company's rate proposal in DE 21-078 was constructed in the same manner.
- c. Please provide the underlying workpapers represented by Exhibit ES-RDC-2 in DPU 21-90, in native format (live excel, where applicable) with all equations intact.
- d. Please indicate whether the Company expects any shifting of costs attributable to electric vehicle ownership onto non-electric vehicle owners will occur as a result of the proposed demand charge alternatives. If the company has conducted any analyses to determine the level of cost shifting at various participation levels and charging load shapes, please provide those analyses. If the company has conducted no such analyses, please explain why this is the case.

Response:

a.and c. The working spreadsheets and information requested in parts a. and c., along with Exhibit ES-RDC-1, are available through the Massachusetts Energy and Environmental Affairs link, https://eeaonline.eea.state.ma.us/DPU/Fileroom/dockets/bydivision, by selecting the Electric Division and Docket # 21-90 links and the corresponding files listed for the July 14, 2021 NSTAR Electric filing. b. While the Company's rate proposal in Docket No. DE 21-078 is not presently being considered in this docket, the Company's rate proposal in Docket No. DE 21-078 was not constructed in the same manner as that referenced in NSTAR Electric Company's proposal in DPU 21-90.

d. The Company's demand charge alternative rate design is currently the subject of Docket No. DE 21-078, and not this docket. However, while there may be cost shifting between customer who receive electric service under a separate EV rate, it is premature to quantify such shifting without sufficient data for evaluation. Indicatively, under the Company's proposal, lower utilization than the level applied in rate design (i.e., 10%) would produce less revenue which could represent a reduction in cost recovery compared with application of a demand charge.

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-6 Page 1 of 4

Comparison of Current vs Proposed Permanent Rates

12 13		(A) Billing	(B) Current Rate		(C) = (A) x (B) Current Revenues		F	(D) Proposed	(E) = (A) x (D) Proposed	(F	i) = (E) - (C) Proposed	(G) = (F) / (C) vs. Current % Cha		
14		Determinants		Rate		Revenues		Rate		Revenues	_	Difference	% Chg		
15	Customer Charge														
10 17 18	Customer Charge	16,601	\$	194.03	\$	3,221,053	\$	211.21	\$	3,506,255	\$	285,202	8.85%		
19	Demand 1-100 kW	1,568,428													
20	Distribution		\$	5.58	\$	8,751,828	\$	6.90	\$	10,822,153	\$	2,070,325	23.66%		
21	Transmission			10.40		16,311,651	\$	10.40		16,311,651		-	0.00%		
22	Stranded Cost Recovery Charge			0.65		1,019,478	\$	0.65		1,019,478		-	0.00%		
23	Domand > 100 kW	2 667 604													
24	Distribution	2,007,094	\$	5.34	\$	14 245 486	\$	6 64	\$	17 713 488	\$	3 468 002	24.34%		
26	Transmission		Ψ	10.40	Ψ	27.744.018	Ψ	10.40	Ψ	27.744.018	Ψ	- 0,400,002	0.00%		
27	Stranded Cost Recovery Charge			0.65		1,734,001		0.65		1,734,001		-	0.00%		
28															
29 30	Minimum Charge	123	\$	893.00	\$	110,064	\$	1,062.00	\$	130,894	\$	20,830	18.92%		
31	Energy Charge 1 - 200,000 kWh	1,448,276,753													
32	Distribution		\$	0.00606	\$	8,776,557	\$	0.00656	\$	9,500,695	\$	724,138	8.25%		
33	Transmission			-		-		-		-		-	0.000/		
34	Stranded Cost Recovery Charge			0.00643		9,312,420		0.00643		9,312,420		-	0.00%		
36	Energy Service Charge			0.06025		87 258 674		0.06025		87 258 674		-	0.00%		
37	Energy control onlarge			0.00020		01,200,011		0.00020		01,200,011			0.0070		
38	Energy Charge >200,000 kWh	217,399,074													
39	Distribution		\$	0.00509	\$	1,106,561	\$	0.00583	\$	1,267,437	\$	160,876	14.54%		
40	Transmission			-		-		-		-		-	0.000/		
41	Stranded Cost Recovery Charge			0.00643		1,397,876		0.00643		1,397,876		-	0.00%		
43	Energy Service Charge			0.06025		13.098.294		0.06025		13.098.294			0.00%		
44										,,					
45	Distribution Impact Only		\$	0.02174	\$	36,211,549	\$	0.02578	\$	42,940,922	\$	6,729,373	18.58%		
46	Total Change		\$	0.12395	\$ 2	206,463,932	\$	0.12799	\$ 2	213,193,305	\$	6,729,373	3.26%		
47															
48	Rate GV - Backup Service < 115 KV														
50	Administrative Charge	108	\$	341.84	\$	36.919	\$	372.10	\$	40.187	\$	3.268	8.85%		
51												.,			
52	Translation Charge	39	\$	57.34	\$	2,236		62.42	\$	2,434	\$	198	8.86%		
53															
54	Demand Charge	35,399													
55	Distribution		\$	4.48	\$	158,588	\$	5.37	\$	190,093	\$	31,505	19.87%		
56	I ransmission Stranded Cost Recovery Charge			1.59		56,284		1.59		56,284		-	0.00%		
51	Stranded Cost Recovery Charge			0.52		11,520		0.52		11,520		-	0.0078		
58															
59	Energy Charge 1 - 200,000 kWh	2,778,333													
60	Distribution		\$	0.00606	\$	16,837	\$	0.00656	\$	18,226	\$	1,389	8.25%		
61	I ransmission Stranded Cast Basevery Charge			-		17 965	\$	-		17 965		-	0.00%		
63	System Benefits Charge			0.00743		20.643	ŝ	0.00743		20.643		-	0.00%		
64	Energy Service Charge			0.06025		167,395	\$	0.06025		167,395		-	0.00%		
65															
66	Energy Charge >200,000 kWh	0													
67	Distribution		\$	0.00509	\$	-	\$	0.00583	\$	-	\$	-	14.54%		
60	Stranded Cost Recovery Charge			-		-	¢ 2	- 0.00643		-		-	0.00%		
70	System Benefits Charge			0.00743		-	ŝ	0.00743		-		-	0.00%		
71	Energy Service Charge			0.06025		-	\$	0.06025		-		-	0.00%		
72							_		_						
73	Distribution Impact Only		\$	0.07723	\$	214,580	\$	0.09032	\$	250,940	\$	36,360	16.94%		
74	Total Change		\$	0.17568	\$	488,095	\$	0.18877	\$	524,455	\$	36,360	7.45%		
75	Rate GV Backup Service > 115 KV														
70	Rate GV - Backup Service > 115 KV														
78	Administrative Charge	-	\$	341.84	\$	-	\$	372.10	\$	-	\$	-	8.85%		
79															
80	Translation Charge	-	\$	57.34	\$	-		62.42	\$	-	\$	-	8.86%		
81	Domand Charge														
୪∠ ନ୍ୟ	Transmission	-		1 50				1 50				~	0.00%		
84	Stranded Cost Recovery Charge			0.32		-		0.32		-		-	0.00%		
85	,3-												2.2070		
86	Energy Charge On Peak	-													
87	Transmission			-		-		-		-		-	0.00%		
88	Stranded Cost Recovery Charge			0.00256		-		0.00256		-		-	0.00%		

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-6

										Attachment SIS-6				
											Pag	ge 3 of 4		
89	System Benefits Charge		0.00586		-		0.00586		-		-	0.00%		
90	Energy Service Charge		0.12222		-		0.12222	2222 -			-	0.00%		
91														
92	Energy Charge Off Peak -													
93	Transmission	-							-		-	0.00%		
94	Stranded Cost Recovery Charge	0.00171			-		0.00171	-		-	0.00%			
95	System Benefits Charge		0.00586		-		0.00586	- 10586			-	0.00%		
96	Energy Service Charge		0.12222		-		0.12222		-		-	0.00%		
97														
98	Distribution Impact Only	\$	-	\$	-	\$	-	\$	-	\$	-			
99	Total Charge	\$	-	\$	-	\$	-	\$	-	\$	-			

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-6 Page 4 of 4

Demand Charge Alternative Rate Design Calculation

Class Loa	55%					
Customer Cha	arge			\$211.21	/month	
	(A) Revenue	(B) Class	(C Ave) = (A) / (B) trage Class		
	Requirement	Consumption		Rate		
Distributic \$	39,303,773	1,665,675,827	\$	0.02360	/kWh	(1)
Transmiss \$	44,055,669	1,665,675,827		0.02645		(2)
SCRC (dei	2,753,479	1,665,675,827		0.00165		(3)
Total Demand			\$	0.05170	/kWh	(4)=(1)+(2)+(3
Total Other **			\$	0.07411		(5)
Total			\$	0.17751	/kWh	(6)=(4)+(5)
* Demand and	d volumetric revenue	requirement com	bined			
** Volumetric I	Energy Supply, SBC	and SCRC Rates,	as fo	ollows:		
				Other		
		SCRC	\$	0.00643	/kWh	
		SBC	\$	0.00743		
		ES	\$	0.06025		

Station					
Utilizatio			4.000		_
n			10%		(7)
Rate Parity Ad	ljustment **		5.5		(8)=(14) / (7)
		Vo	lumetric		
			Rate At		
Demand A	Distribution	\$	0.12978	kWh	(9)=(1)*(8)
Demand A	Transmission	\$	0.14547	kWh	(10)=(2)*(8)
Demand A	SBC	\$	0.00909 /	kWh	(11)=(3)*(8)
√olumetric	Other*	\$	0.07411 /	kWh	(12)=5)
Total Alterr	Total	\$	0.35845	kWh	(13)=(9)+(10)+(11)+(1

M	onthly Customer Charge	\$211.21	
Ve	olumetric Charge	35.845	cents/kWh

	2022		2023		2024	2025		2026		2027		2028		2029		2030		2031		Test Yea
	3%		5%		7%			15%		20%		25%		27%		30%		30%		
					7.9															1.0
Volumetric Rate at Designated Utilization Levels (\$/kWh)																				
\$	0.43260	\$	0.25956	\$	0.18540		\$	0.08652	\$	0.06489	\$	0.05191	\$	0.04807	\$	0.04326	\$	0.04326	\$	0.02360
	0.48490		0.29094		0.20781			0.09698		0.07274		0.05819		0.05388		0.04849		0.04849		0.02645
	0.03031		0.01818		0.01299			0.00606		0.00455		0.00364		0.00337		0.00303		0.00303		0.00165
	0.07411		0.07411		0.07411			0.07411		0.07411		0.07411		0.07411		0.07411		0.07411		0.07411
Ś	1.02192	Ś	0.64279	Ś	0.48031		Ś	0.26367	Ś	0.21628	Ś	0.18785	Ś	0.17942	Ś	0.16889	Ś	0.16889	Ś	0.12581

Г								Γ					
Station Utilization		3%	5%	7%	10%	15%	20%		25%		27%	30%	30%
Customer	\$	211.21	\$ 211.21	\$ 211.21	\$ 211.21	\$ 211.21	\$ 211.21	49	\$ 211.21		\$ 211.21	\$ \$ 211.21	\$ 211.21
Volumetric (applied to all kV	\$ Vh)	1.02192	\$ 0.64279	\$ 0.48031	\$ 0.35845	\$ 0.26367	\$ 0.21628	5	\$ 0.18785	:	\$ 0.17942	\$ 6 0.16889	\$ 0.16889

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-7 Page 1 of 2

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 20-170 Electric Vehicle Time of Use Rates

Staff Data Requests - Set 2

Date Request Received: 7/21/21	Date of Response: 8/4/21
Request No. DOE 2-5	Respondent: Heather Tebbetts
-	Melissa Samenfeld

<u>REQUEST</u>:

Reference Response Staff 1-3, stating "The Company did not propose an EV TOU rate for its commercial rates," and Order No. 26, 394 (August 18, 2020) stating "Staff recommended the Commission open a new proceeding and direct each electric utility to file within 120 days, consistent with the guidance above: (1) an EV TOU rate proposal for separately-metered residential and small commercial customer applications; (2) an EV TOU rate proposal for separately-metered high demand draw commercial customer applications that may incorporate direct current fast charging or clustered level two chargers."

- a. Please explain why the Company did not develop an EV TOU rate proposal for separately-metered high demand draw commercial customer applications.
- b. Please explain why the Company could not utilize the same method it used to develop EV TOU rates for residential and small commercial customers, and develop a EV TOU rate for high demand draw commercial customer applications.

RESPONSE:

- a. The Company does not agree that offering EV TOU rates for separately-metered high demand draw commercial applications is the appropriate rate design for such electric vehicle charging installations.
- b. The premise of the residential rate is completely different than separately metered commercial customer applications. Residential customers will charge when they are home, most likely on the weekends and evenings, thus charging during off peak hours. Commercial applications provide charging for any time during the day when drivers are out in the community and need to charge; thus, completely different use cases are being compared in the question.

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-8 Page 1 of 3

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-8 Page 2 of 3 Liberty Utilities (Granite State Electric) d/b/a Liberty Docket No. DE 20-170 Attachment HT/MS - 1

Page 1 of 2

Liberty Utilities (Granite State Electric) d/b/a Liberty

Rate EV-L

		Rate G-1 Billing	Rate G-1	Rate G-1	Percent Split	Proposed %	Proposed	Proposed
		Determinants	Current Revenues	Current Rates	By Charge	Split by Charge	Revenues	Rates
		(a)	(b)	(c.)	(d)	(e)	(f)	(g)
1	Customer Charge	1,742	\$747,091	\$428.76	6.98%	5.00%	\$534,883	\$307.05
2	kWh	367,232,595	\$1,293,482	\$0.00352	12.09%	85.00%	\$9,093,009	\$0.02476
3	kW	951,328	\$8,657,085	\$9.10	80.93%	10.00%	\$1,069,766	\$1.12
4		Total	\$10,697,658				\$10,697,658	

a Billing determinants from DE 19-064 test year

b Current rates multiplied by billing determinants in (a)

c Current rates

d Line 1 / Line 4

e Percent split

f (e.) x (b)

g (f) / (a)

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-8 Page 3 of 3 Liberty Utilities (Granite State Electric) d/b/a Liberty

Docket No. DE 20-170

Attachment HT/MS - 1

Page 2 of 2

Liberty Utilities (Granite State Electric) d/b/a Liberty

Rate EV-M

		Rate G-2 Billing	Rate G-2 Rate G-2 F		Percent Split	Proposed %	Proposed	Proposed	
		Determinants	Current Revenues	Current Rates	By Charge	Split by Charge	Revenues	Rates	
		(a)	(b)	(c.)	(d)	(e)	(f)	(g)	
1	Customer Charge	10,558	\$754,606	\$71.47	13.21%	5%	\$285,561	\$27.05	
2	kWh	125,159,740	\$289,119	\$0.00231	5.06%	85%	\$4,854,539	\$0.03879	
3	kW	510,109	\$4,667,497	\$9.15	81.73%	10%	\$571,122	\$1.12	
4		Total	\$5,711,222			Total	\$5,711,222		

a Billing determinants from DE 19-064 test year

b Current rates multiplied by billing determinants in (a)

c Current rates

d Line 1 / Line 4

e Percent split

f (e.) x (b)

g (f) / (a)

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-9 Page 1 of 2

Docket No. DE 20-170 Exhibit 8

Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-9 Page 2 of 2

Large Customer Group Rates G-1 and G-2 Illustrative Weighted Average Energy Service Rates For Comparison Purposes Only February 2021 - July 2021

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty DE 20-053 Energy Service Reconciliation Schedule AMH/DBS-1 Rates Page 1 of 1

REDACTED

Section 1: Percentage of Medium and Large C&I kWhs Attributable to Energy Service							
1 September 2020 Medium and Large C&I Energy Service kWhs	8,495,105						
2 September 2020 Total Medium and Large C& kWhs	43,935,731						
3 Percentage of Medium and Large C&I Energy Service kWhs to Total Medium and Large C&I kWhs	19.34%						
Section 2: Projected Medium and Large C&I Default Service kWhs, February 2021 - July 2021							
	February	March	April	May	June	July	Total
	(a)	(b)	(c)	(d)	(e)	(f)	(g)
4 Projected Total Company Medium and Large kWhs	37,608,421	41,625,419	39,959,273	42,893,135	45,631,756	50,397,959	258,115,964
5 Percentage of Medium and Large C&I Energy Service kWhs to Total Medium and Large C&I kWhs	<u>19.34%</u>	<u>19.34%</u>	<u>19.34%</u>	<u>19.34%</u>	<u>19.34%</u>	<u>19.34%</u>	
6 Projected Medium and Large C&I Energy Service kWhs	7,271,701	8,048,399	7,726,245	8,293,516	8,823,036	9,744,596	49,907,494
Section 3: Medium and Large C&I Default Service Load Weighting for February 2021 - July 2021							
7 Projected Medium and Large C&I Energy Service kWhs	7,271,701	8,048,399	7,726,245	8,293,516	8,823,036	9,744,596	49,907,494
8 Loss Factor							
9 Wholesale Contract Price (\$/MWh)							
10 Base Energy Service Rate (\$/kWh)	\$0.07799	\$0.06803	\$0.06003	\$0.05533	\$0.05109	\$0.05460	
11 Energy Service Reconciliation Adjustment Factor (\$/kWh)	(\$0.00378)	(\$0.00378)	(\$0.00378)	(\$0.00378)	(\$0.00378)	(\$0.00378)	
12 Energy Service Cost Reclassification Adjustment Factor (\$/kWh)	\$0.00081	\$0.00081	\$0.00081	\$0.00081	\$0.00081	\$0.00081	
13 Renewable Portfolio Standard Adder (\$/kWh)	\$0.00859	\$0.00859	\$0.00859	\$0.00859	\$0.00859	\$0.00859	
14 Total Estimated Medium and Large C&I Energy Service Price per kWh	\$0.08361	\$0.07365	\$0.06565	\$0.06095	\$0.05671	\$0.06022	
1 Per Monthly Energy Service Revenue Reports (Rates G-1 and G-2)							
2 Per Monthly Total Revenue Reports (Rates G-1 and G-2)							
$3 \text{ line} (1) \div \text{ line} (2)$							

- 3 Line (1) + Line (2)
 4 Per Company forecast for medium and large C&I rates (Rates G-1 and G-2)
- 5 Line (3)

6 Line (4) x Line (5)

7 Line (6)

8 Projected Wholesale Load divided by Projected Retail Load, rounded to five decimal places

9 Schedule JDW-2 Exhibit 5

10 Line (8) x Line (9) / 1000, truncated to five decimal places

11 Schedule AMH/DBS-5 Page 1, Line 6, filed in April 2020

- 12 Schedule AMH/DBS-6 Page 1, Line 5, filed in April 2020
- 13 Schedule JDW-2 Exhibit 11

14 Line (10) + Line (11) + Line (12) + Line (13)

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-10 Page 1 of 2

Docket No. DE 20-170 Exhibit 8

Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-10 Page 2 of 2

Large Customer Group Rates G-1 and G-2 Illustrative Weighted Average Energy Service Rates For Comparison Purposes Only August 2021 - January 2022

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty DE 21-087 Energy Service Reconciliation Revised Schedule AMH/DBS-1 Rates Page 1 of 1

REDACTED

Section 1: Percentage of Medium and Large C&I kWhs Attributable to Energy Service	8 060 427						
2 March 2021 Total Medium and Large CKI Lifetyy Service KWIS	30 528 385						
	00,140/						
3 Percentage of Medium and Large C&I Energy Service Kwins to Total Medium and Large C&I Kwins	20.41%						
Section 2: Projected Medium and Large C&I Default Service kWhs, August 2021 - January 2022							
	August	September	October	November	December	January	Total
	(a)	(b)	(c)	(d)	(e)	(f)	(g)
4 Projected Total Company Medium and Large kWhs	50,201,834	44,230,582	43,381,984	40,972,721	41,336,151	42,197,264	262,320,536
5 Percentage of Medium and Large C&I Energy Service kWhs to Total Medium and Large C&I kWhs	20.41%	20.41%	20.41%	20.41%	20.41%	20.41%	
6 Projected Medium and Large C&I Energy Service kWhs	10,248,333	9,029,346	8,856,111	8,364,278	8,438,469	8,614,259	53,550,794
Section 3: Medium and Large C&I Default Service Load Weighting for August 2021 - January 2022							
7 Projected Medium and Large C&I Energy Service kWhs	10,248,333	9,029,346	8,856,111	8,364,278	8,438,469	8,614,259	53,550,794
8 Loss Factor							
9 Wholesale Contract Price (\$/MWh)							
10 Base Energy Service Rate (\$/kWh)	\$0.05768	\$0.05411	\$0.05582	\$0.06842	\$0.08840	\$0.11180	
11 Energy Service Reconciliation Adjustment Factor (\$/kWh)	\$0.00146	\$0.00146	\$0.00146	\$0.00146	\$0.00146	\$0.00146	
12 Energy Service Cost Reclassification Adjustment Factor (\$/kWh)	(\$0.00115)	(\$0.00115)	(\$0.00115)	(\$0.00115)	(\$0.00115)	(\$0.00115)	
13 Renewable Portfolio Standard Adder (\$/kWh)	\$0.00684	\$0.00684	\$0.00684	\$0.00684	\$0.00684	\$0.00684	
14 Total Estimated Medium and Large C&I Energy Service Price per kWh	\$0.06483	\$0.06126	\$0.06297	\$0.07557	\$0.09555	\$0.11895	
1 Per Monthly Energy Service Revenue Reports (Rates G-1 and G-2)							
2 Per Monthly Total Revenue Reports (Rates G-1 and G-2)							
2 + line(4) + line(2)							

- Line (1) + Line (2)
 Per Company forecast for medium and large C&I rates (Rates G-1 and G-2)
- 5 Line (3)
- 6 Line (4) x Line (5)

7 Line (6)

8 Projected Wholesale Load divided by Projected Retail Load, rounded to five decimal places

9 Schedule JDW-2 Exhibit 5

10 Line (8) x Line (9) / 1000, truncated to five decimal places

11 Schedule AMH/DBS-5 Page 1, Line 6

12 Schedule AMH/DBS-6 Page 1, Line 5

13 Schedule JDW-2 Exhibit 11

14 Line (10) + Line (11) + Line (12) + Line (13)

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-11 Page 1 of 2

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-11 Page 2 of 2

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Docket No. DE 21-_____ Schedule DBS/AMH-3 Page 1 of 7

Liberty Utilities (Granite State Electric) d/b/a Liberty Utilities Transmission Charge Calculation

	_	Total	D	D-10	G-1	G-2	G-3	Streetlights	т	v
[1]	Estimate of Transmission Expense	\$26,891,183								
[2]	Coincident Peak (KW)	1,749,718	646,190	9,330	655,684	261,052	149,209	4,909	22,884	460
[3]	Coincident Peak Allocator	100.00%	36.93%	0.53%	37.47%	14.92%	8.53%	0.28%	1.31%	0.03%
[4]	Allocated Transmission Expense	\$26,891,183	\$9,931,208	\$143,392	\$10,077,120	\$4,012,073	\$2,293,173	\$75,446	\$351,701	\$7,070
[5]	Forecasted kWh Sales	879,426,489	284,513,526	5,441,648	367,232,595	125,159,740	79,307,937	3,836,676	13,619,228	315,138
[6]	Proposed Transmission Charge per kWh	\$0.03057	\$0.03490	\$0.02635	\$0.02744	\$0.03205	\$0.02891	\$0.01966	\$0.02582	\$0.02243
[7]	Current Transmission Charge per kWh	\$0.02545	\$0.02834	\$0.02443	\$0.02239	\$0.02727	\$0.02724	\$0.01694	\$0.02794	\$0.02675
[8]	Increase (Decrease) in Transmission Charge per kWh	\$0.00512	\$0.00656	\$0.00192	\$0.00505	\$0.00478	\$0.00167	\$0.00272	(\$0.00212)	(\$0.00432)

Schedule JDW-1, Line (10)
 Schedule DBS/AMH-3, Page 2 of 7
 Line (2) as a percent of total Line (2)

[4] Line (1) x Line (3)

[7] Line (1) Cline (1)
[5] Per Company Forecast
[6] Line (4) + Line (5), truncated after 5 decimal places
[7] Per Currently Effective Tariffs

[8] Line (6) - Line (7)

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-12 Page 1 of 2

Liberty Utilities (Granite State Electric) d/b/a Liberty Revenues by Month July 2020 through June 2021^a

	July-20	August-20	September-20	October-20	November-20	December-20	January-21	February-21	March-21	April-21	May-21	June-21
Distribution	\$3,023,654.17	\$3,023,076.48	\$2,416,749.90	\$3,486,550.93	\$3,506,457.78	\$3,897,635.80	\$4,094,153.35	\$3,980,761.83	\$3,957,252.82	\$3,627,157.77	\$3,373,800.88	\$3,990,607.68
Transmission	\$2,125,004.50	\$2,087,434.98	\$1,793,853.32	\$1,580,209.10	\$1,555,264.57	\$1,802,766.60	\$1,919,525.50	\$1,824,123.24	\$1,825,117.67	\$1,674,738.93	\$1,769,633.78	\$2,536,014.78
Energy Service	\$4,090,433.63	\$4,431,866.60	\$3,853,545.38	\$2,003,541.83	\$2,116,486.23	\$2,669,518.28	\$3,096,351.70	\$2,944,230.11	\$2,707,082.00	\$2,264,243.28	\$1,883,613.19	\$2,360,656.42
Total	\$9,239,092.30	\$9,542,378.06	\$8,064,148.60	\$7,070,301.86	\$7,178,208.58	\$8,369,920.68	\$9,110,030.55	\$8,749,115.18	\$8,489,452.49	\$7,566,139.98	\$7,027,047.85	\$8,887,278.88

^a Quarterly NHPUC F-1 filing

Docket No. DE 20-170 Exhibit 8 Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-13 Page 1 of 3

Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-13 Page 2 of 3

Unitil Energy Systems, Inc. Docket No. DE 20-170 Electric Vehicle Time of Use Rates Staff Data Requests – Set 1

Received: June 29, 2021

Date of Response: July 14, 2021

Request No. Staff 1-8

Witness: C. Carroll, C. Simpson, C. Valianti

Request:

Reference the Commission's October 16, 2020 Order of Notice in this proceeding, describing the issues noticed in this proceeding as including "whether the EV TOU rate proposals to be developed and filed are consistent with the rate design standards delineated in Order No. 26,394; whether those EV TOU rate design proposals are likely to result in just and reasonable electric rates, as required by RSA 374:2 and RSA 378:5 and :7; and whether the EV TOU rate design proposals are consistent with the New Hampshire Energy Policy defined in RSA 378:37."

- a. Please explain whether the Company believes the EV Program Infrastructure Proposal discussed at Carroll, Simpson, Valianti testimony pages 28-44 is consistent with Commission's October 16, 2020 Order of Notice.
- b. Please explain whether the Company's EV Program Infrastructure Proposal discussed at Carroll, Simpson, Valianti testimony pages 28-44 is expected to have an impact on current rates and revenues. If so, please explain why percentage revenue impact is not detailed in the cover letter of this proceeding consistent with Puc 1605.02(a)(I).

Response:

a. The Company believes that the EV Program Infrastructure Proposal is consistent with the Commission's October 16, 2020 Order of Notice. In Order 26,394, the Commission found that "further investigation of issues related to advanced metering functionality associated with EVSE embedded meters is warranted" and directed Staff to further this concept. Order 26,394 at 13-14. The Company believes that in order to understand measurement functionalities offered by EVSE embedded meters, experience with associated data is essential. In an effort to support a crucial segment of the EV charging population (i.e. at home charging), the Company has proposed to offer rebates for the installation and procurement of EVSE providing embedded metering functionality. This will provide an opportunity for the Company to engage with customers, EVSE manufacturers, and installers to understand how to deploy EVSE and how to manage embedded EVSE metering capabilities. The Company further believes that the EV Program Infrastructure Proposal is also consistent with the Order of Notice because the Company has requested approval of the program subject to the Commissions' determination that the rates are just and reasonable, subject to investigation, subject to modification, and commensurate with the least cost

Direct Testimony of Sanem Sergici Docket No. DE 20-170 Attachment SIS-13 Page 3 of 3

Unitil Energy Systems, Inc. Docket No. DE 20-170 Electric Vehicle Time of Use Rates Staff Data Requests – Set 1

Received: June 29, 2021

Date of Response: July 14, 2021

Request No. Staff 1-8

Witness: C. Carroll, C. Simpson, C. Valianti

energy planning process, as required by RSA 374:2, 378:5, 7 and 37, respectively.

b. Yes, the Program is expected to have an impact on revenues. The Commission recognized in Order 26,486 that "Unitil's EV TOU proposals will also be considered in Docket DE 20-170... and that resolution may inform our decision in the instant rate case." Therefore, the Company's expectation is that the EV Program Infrastructure Proposal will be ruled on in the Company's base rate case Docketed in DE 21-030, not DE 20-170. The Company provided cost estimates in the rate case, however the impact on rates is dependent upon actual program spending in the future.